Abstract
Robot personality design has garnered research interest for its crucial role in enhancing the robot’s social capabilities and promoting user experience. This study aims to use machine learning classification techniques to predict the personality of a robot by analyzing the neural activities in the prefrontal cortex (PFC) when individuals interact with the robot that features a specific personality design (i.e., extroverted or introverted). We recruited 64 participants and divided them into two groups to interact with an extroverted or introverted robot. We collected data using a functional near-infrared spectroscopy (fNIRS) device and, after data preprocessing, selected signal means as features for analysis. After applying six machine learning methods for data classification, we found significant differences in the performance of different classifiers. In addition, we observed that personality classification based on left and right brain data showed different performance. According to the results, we can determine the type of robot personality with which users are interacting based on the medial PFC activities during user‒robot interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhou, H., Wang, X., Au, W., Kang, H., Chen, C.: Intelligent robots for fruit harvesting: recent developments and future challenges. Precision Agric. 23, 1856–1907 (2022). https://doi.org/10.1007/s11119-022-09913-3
Paetzel-Prüsmann, M., Perugia, G., Castellano, G.: The Influence of robot personality on the development of uncanny feelings. Comput. Hum. Behav. 120, 106756 (2021). https://doi.org/10.1016/j.chb.2021.106756
Esteban, P.G., et al.: Should i be introvert or extrovert? a pairwise robot comparison assessing the perception of personality-based social robot behaviors. Int J of Soc Robotics. 14, 115–125 (2022). https://doi.org/10.1007/s12369-020-00715-z
Nagamachi, M.: Kansei engineering: a new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 15, 3–11 (1995). https://doi.org/10.1016/0169-8141(94)00052-5
Hu, X., Zhuang, C., Wang, F., Liu, Y.-J., Im, C.-H., Zhang, D.: fNIRS evidence for recognizably different positive emotions. Front. Hum. Neurosci. 13, 120 (2019)
Dixon, M., Thiruchselvam, R., Todd, R., Christoff, K.: Emotion and the prefrontal cortex: an integrative review. Psychol. Bull. 143(10), 1033–1081 (2017). https://doi.org/10.1037/bul0000096
Yorgancigil, E., Yildirim, F., Urgen, B.A., Erdogan, S.B.: An exploratory analysis of the neural correlates of human-robot interactions with functional near infrared spectroscopy. Front. Hum. Neurosci. 16, 883905 (2022)
Camerer, C., Loewenstein, G., Prelec, D.: Neuroeconomics: how neuroscience can inform economics. J. Econ. Lit. 43, 9–64 (2005). https://doi.org/10.1257/0022051053737843
Zhu, G., Jiang, B., Tong, L., Xie, Y., Zaharchuk, G., Wintermark, M.: Applications of deep learning to neuro-imaging techniques. Front. Neurol. 10, 869 (2019). https://doi.org/10.3389/fneur.2019.00869
Kumar, V., Shivakumar, V., Chhabra, H., Bose, A., Venkatasubramanian, G., Gangadhar, B.N.: Functional near infra-red spectroscopy (fNIRS) in schizophrenia: a review. Asian J. Psychiatr. 27, 18–31 (2017). https://doi.org/10.1016/j.ajp.2017.02.009
Zhou, L., Wu, B., Deng, Y., Liu, M.: Brain activation and individual differences of emotional perception and imagery in healthy adults: a functional near-infrared spectroscopy (fNIRS) study. Neurosci. Lett. 797, 137072 (2023). https://doi.org/10.1016/j.neulet.2023.137072
Bandara, D., Hirshfield, L., Velipasalar, S.: Classification of affect using deep learning on brain blood flow data. J. Near Infrared Spectrosc. 27, 206–219 (2019). https://doi.org/10.1177/0967033519837986
Wood, J.N., Grafman, J.: Human prefrontal cortex: processing and representational perspectives. Nat. Rev. Neurosci. 4, 139–147 (2003). https://doi.org/10.1038/nrn1033
Gao, W., et al.: Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. 106, 6790–6795 (2009). https://doi.org/10.1073/pnas.0811221106
Yuan, P., Raz, N.: Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci. Biobehav. Rev. 42, 180–192 (2014). https://doi.org/10.1016/j.neubiorev.2014.02.005
Grossmann, T.: The role of medial prefrontal cortex in early social cognition. Front. Hum. Neurosci. 7, 340 (2013)
Lim, G., Kim, H.: Distinctive roles of mPFC subregions in forming impressions and guiding social interaction based on others’ social behaviour. Soc. Cogn. Affect. Neurosci. 17, 1118–1130 (2022). https://doi.org/10.1093/scan/nsac037
Xu, H., et al.: A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron 102, 668-682.e5 (2019). https://doi.org/10.1016/j.neuron.2019.02.026
Déziel, R.A., Tasker, R.A.: Bilateral Ischaemic lesions of the medial prefrontal cortex are Anxiogenic in the rat. Acta Neuropsychiatrica 30, 181–186 (2018). https://doi.org/10.1017/neu.2017.32
Lee, E., Hong, J., Park, Y.-G., Chae, S., Kim, Y., Kim, D.: Left brain cortical activity modulates stress effects on social behavior. Sci. Rep. 5, 13342 (2015). https://doi.org/10.1038/srep13342
Cerqueira, J.J., Almeida, O.F.X., Sousa, N.: The stressed prefrontal cortex. Left? Right!. Brain Behav. Immun. 22, 630–638 (2008). https://doi.org/10.1016/j.bbi.2008.01.005
Tranel, D., Bechara, A., Denburg, N.L.: Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38, 589–612 (2002). https://doi.org/10.1016/S0010-9452(08)70024-8
Gainotti, G., Caltagirone, C., Zoccolotti, P.: Left/right and cortical/subcortical dichotomies in the neuropsychological study of human emotions. Cogn. Emot. 7, 71–93 (1993). https://doi.org/10.1080/02699939308409178
Kato, T.: Kansei Robotics: bridging human beings and electronic gadgets through Kansei engineering. In: 2013 International Conference on Biometrics and Kansei Engineering, pp. 327–331. IEEE, Tokyo, Japan (2013). https://doi.org/10.1109/ICBAKE.2013.88
Reeves, B., Nass, C.: The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Pla. Bibliovault OAI Repository, the University of Chicago Press (1996)
Dautenhahn, K.: Socially intelligent robots: dimensions of human–robot interaction. Philos. Trans. R. Soc. B: Biol. Sci. 362, 679–704 (2007). https://doi.org/10.1098/rstb.2006.2004
Song, Y., Tao, D., Luximon, Y.: In robot we trust? The effect of emotional expressions and contextual cues on anthropomorphic trustworthiness. Appl. Ergon. 109, 103967 (2023). https://doi.org/10.1016/j.apergo.2023.103967
Aly, A., Tapus, A.: Towards an intelligent system for generating an adapted verbal and nonverbal combined behavior in human–robot interaction. Auton. Robot. 40, 193–209 (2016). https://doi.org/10.1007/s10514-015-9444-1
Lee, K.M., Peng, W., Jin, S.-A., Yan, C.: Can robots manifest personality?: An empirical test of personality recognition, social responses, and social presence in human-robot interaction. J. Commun. 56, 754–772 (2006). https://doi.org/10.1111/j.1460-2466.2006.00318.x
Esterwood, C., Robert, L.P.: A systematic review of human and robot personality in health care human-robot interaction. Front. Robot. AI 8, 748246 (2021)
Kaplan, A.D., Sanders, T., Hancock, P.A.: The relationship between extroversion and the tendency to anthropomorphize robots: a bayesian analysis. Front. Robot. AI. 5, 135 (2019)
Mulders, P., Llera, A., Tendolkar, I., van Eijndhoven, P., Beckmann, C.: Personality profiles are associated with functional brain networks related to cognition and emotion. Sci. Rep. 8, 13874 (2018). https://doi.org/10.1038/s41598-018-32248-x
Szabóová, M., Sarnovský, M., Maslej Krešňáková, V., Machová, K.: Emotion analysis in human-robot interaction. Electronics 9, 1761 (2020). https://doi.org/10.3390/electronics9111761
Javed, H., Park, C.H.: Behavior-based risk detection of autism spectrum disorder through child-robot interaction. In: Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, pp. 275–277. ACM, Cambridge United Kingdom (2020). https://doi.org/10.1145/3371382.3378382
Friedman, N.P., Robbins, T.W.: The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacol. 47, 72–89 (2022). https://doi.org/10.1038/s41386-021-01132-0
Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A.: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007). https://doi.org/10.3758/BF03193146
Khan, H., Noori, F.M., Yazidi, A., Uddin, M.Z., Khan, M.N.A., Mirtaheri, P.: Classification of individual finger movements from right hand using fNIRS signals. Sensors 21, 7943 (2021). https://doi.org/10.3390/s21237943
Blonder, L., Bowers, D., Heilman, K.: The role of the right hemisphere in emotional communication. Brain 114(Pt 3), 1115–1127 (1991). https://doi.org/10.1093/brain/114.3.1115
Acknowledgements
This work was supported by Natural Science Foundation of Zhejiang Province [LQ24G010005].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Liu, F., Lei, X. (2024). Neural Correlates of Robot Personality Perception: An fNIRS Study. In: Rau, PL.P. (eds) Cross-Cultural Design. HCII 2024. Lecture Notes in Computer Science, vol 14702. Springer, Cham. https://doi.org/10.1007/978-3-031-60913-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-60913-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60912-1
Online ISBN: 978-3-031-60913-8
eBook Packages: Computer ScienceComputer Science (R0)