Skip to main content

A New Structural Parameter on Single Machine Scheduling with Release Dates and Deadlines

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2024)

Abstract

In this paper we study the single machine scheduling problem with release dates, deadlines and precedence relations where the objective is to minimize the makespan. This is a well-known strongly NP-hard scheduling problem [18]. We analyze the problem from the parameterized complexity point of view. We propose parameter \(q\) which is the maximum number of time windows \([r_j, d_j)\) that can strictly include a time window \([r_i, d_i)\) on both ends. We show that problems \(1|prec, r_j, d_j|C_{max}\) and \(1|prec, r_j|L_{max}\) are fixed-parameter tractable parameterized by \(q\). We use a dynamic programming approach and define a new dominance rule, which we call the weak earliest deadline rule. This rule narrows down the number of relevant scheduling prefixes enough to complete the search via a fixed-parameter tractable number of dynamic programming states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baart, R., de Weerdt, M., He, L.: Single-machine scheduling with release times, deadlines, setup times, and rejection. Eur. J. Oper. Res. 291(2), 629–639 (2021)

    Article  MathSciNet  Google Scholar 

  2. Baker, K.R.: The effects of input control in a simple scheduling model. J. Oper. Manag. 4(2), 99–112 (1984)

    Article  Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R.: W[2]-hardness of precedence constrained k-processor scheduling. Oper. Res. Lett. 18(2), 93–97 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., van der Wegen, M.: Parameterized complexity of scheduling chains of jobs with delays. In: Cao, Y., Pilipczuk, M. (eds.) 15th International Symposium on Parameterized and Exact Computation (IPEC), December 14-18 2020, Hong Kong, China (Virtual Conference), LIPIcs, vol. 180, pp. 1–15 (2020)

    Google Scholar 

  5. Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., van Bevern, R., Woeginger, G.J.: Precedence-constrained scheduling problems parameterized by partial order width. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) Discrete Optimization and Operations Research. Lecture Notes in Computer Science(), vol. 9869, pp. 105–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_9

    Chapter  Google Scholar 

  6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Cham (1999)

    Book  Google Scholar 

  7. Downey, R.G., Fellows, M.R., Regan, K.W.: Descriptive complexity and the W hierarchy. In: Proof Complexity and Feasible Arithmetics, pp. 119–134 (1996)

    Google Scholar 

  8. Erschler, J., Fontan, G., Merce, C.: Un nouveau concept de dominance pour l’ordonnancement de travaux sur une machine. RAIRO-Oper. Res. 19(1), 15–26 (1985)

    Article  MathSciNet  Google Scholar 

  9. Erschler, J., Fontan, G., Mercé, C., Roubellat, F.: A new dominance concept in scheduling n jobs on a single machine with ready times and due dates. Oper. Res. 31(1), 114–127 (1983). https://doi.org/10.1287/OPRE.31.1.114

    Article  Google Scholar 

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Cham (1998)

    Google Scholar 

  11. Gordon, V.S., Werner, F., Yanushkevich, O.: Single machine preemptive scheduling to minimize the weighted number of late jobs with deadlines and nested release/due date intervals. RAIRO-Oper. Res. 35(1), 71–83 (2001)

    Article  MathSciNet  Google Scholar 

  12. Grigoreva, N.: Single machine scheduling with precedence constrains, release and delivery times. In: Wilimowska, Z., Borzemski, L., Swiatek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. Advances in Intelligent Systems and Computing, vol. 1052, pp. 188–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-30443-0_17

  13. Hall, L.A., Shmoys, D.B.: Jackson’s rule for single-machine scheduling: Making a good heuristic better. Math. Oper. Res. 17(1), 22–35 (1992)

    Article  MathSciNet  Google Scholar 

  14. Hanen, C., Munier Kordon, A.: Fixed-parameter tractability of scheduling dependent typed tasks subject to release times and deadlines. J. Sched., 1–15 (2023)

    Google Scholar 

  15. Hermelin, D., Karhi, S., Pinedo, M., Shabtay, D.: New algorithms for minimizing the weighted number of tardy jobs on a single machine. Ann. Oper. Res. 298(1), 271–287 (2021)

    Article  MathSciNet  Google Scholar 

  16. Kordon, A.M., Tang, N.: A fixed-parameter algorithm for scheduling unit dependent tasks with unit communication delays. In: Sousa, L., Roma, N., Tomas, P. (eds.) Euro-Par 2021: Parallel Processing. Lecture Notes in Computer Science(), vol. 12820, pp. 105–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85665-6_7

    Chapter  Google Scholar 

  17. Lawler, E.L.: Optimal sequencing of a single machine subject to precedence constraints. Manage. Sci. 19(5), 544–546 (1973)

    Article  Google Scholar 

  18. Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Article  MathSciNet  Google Scholar 

  19. Mallem, M., Hanen, C., Munier-Kordon, A.: Parameterized complexity of a parallel machine scheduling problem. In: 17th International Symposium on Parameterized and Exact Computation (IPEC) (2022)

    Google Scholar 

  20. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Math. Program. 154(1), 533–562 (2015)

    Article  MathSciNet  Google Scholar 

  21. Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models. Discrete Math. Theor. Comput. Sci. 3 (1999)

    Google Scholar 

  22. Sourd, F., Nuijten, W.: Scheduling with tails and deadlines. J. Sched. 4(2), 105–121 (2001)

    Article  MathSciNet  Google Scholar 

  23. Ware, E.B.: Job shop simulation on the IBM 704. In: Preprints of Papers Presented at the 14th National Meeting of the Association for Computing Machinery (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Mallem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallem, M., Hanen, C., Munier-Kordon, A. (2024). A New Structural Parameter on Single Machine Scheduling with Release Dates and Deadlines. In: Basu, A., Mahjoub, A.R., Salazar González, J.J. (eds) Combinatorial Optimization. ISCO 2024. Lecture Notes in Computer Science, vol 14594. Springer, Cham. https://doi.org/10.1007/978-3-031-60924-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60924-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60923-7

  • Online ISBN: 978-3-031-60924-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics