Skip to main content

Incorporating Behavioral Recommendations Mined from Event Logs into AI Planning

  • Conference paper
  • First Online:
Intelligent Information Systems (CAiSE 2024)

Abstract

AI planning plays a crucial role in the design and optimization of business processes, providing optimal plans, i.e., sequence of activities, based on manually crafted or formally documented rules. When these plans are executed in business processes, the supporting information systems record a wealth of event data. Analyzing such event data facilitates understanding implicit patterns and recommendations that have the potential to refine planning strategies significantly. In this paper, we introduce a systematic approach to mining these recommendations from event data and integrating them into AI planning, thus creating plans that are informed by both the regulatory hard rules and the flexibility of soft recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Twijri, M.I., Luna, J.M., Herrera, F., Ventura, S.: Course recommendation based on sequences: an evolutionary search of emerging sequential patterns. Cogn. Comput. 14(4), 1474–1495 (2022)

    Article  Google Scholar 

  2. Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning Qual. temporal preferences. KR 6, 134–144 (2006)

    Google Scholar 

  3. Britto, J., Prabhu, S., Gawali, A., Jadhav, Y.: A machine learning based approach for recommending courses at graduate level. In: ICSSIT, pp. 117–121 (2019)

    Google Scholar 

  4. Das, M., Odom, P., Islam, M.R., Doppa, J.R., Roth, D., Natarajan, S.: Preference-guided planning: an active elicitation approach. In: André, E., Koenig, S., Dastani, M., Sukthankar, G. (eds.) AAMAS 2018, pp. 1921–1923 (2018)

    Google Scholar 

  5. Desmarais, M.C., de Baker, R.S.J.: A review of recent advances in learner and skill modeling in intelligent learning environments. User Model. User Adapt. Interact. 22(1–2), 9–38 (2012)

    Article  Google Scholar 

  6. Fikes, R., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3/4), 189–208 (1971)

    Article  Google Scholar 

  7. Fox, M., Long, D., Magazzeni, D.: Explainable planning (2017)

    Google Scholar 

  8. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation of LTL formulae to Büchi automata. In: FORTE, pp. 308–326 (2002)

    Google Scholar 

  9. Jiang, W., Pardos, Z.A., Wei, Q.: Goal-based course recommendation. In: LAK, pp. 36–45 (2019)

    Google Scholar 

  10. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process models through automated planning. Expert Syst. Appl. 82, 162–183 (2017)

    Article  Google Scholar 

  11. Li, M., Wang, H., Qi, C., Zhou, C.: Handling temporal constraints with preferences in HTN planning for emergency decision-making. J. Intell. Fuzzy Syst. 30(4), 1881–1891 (2016)

    Article  Google Scholar 

  12. Mantik, S., Li, M., Porteous, J.: A preference elicitation framework for automated planning. Expert Syst. Appl. 208, 118014 (2022)

    Article  Google Scholar 

  13. Marrella, A.: Automated planning for business process management. J. Data Semant. 8(2), 79–98 (2019)

    Article  Google Scholar 

  14. Myers, K.L., Jarvis, P., Tyson, M., Wolverton, M.: A mixed-initiative framework for robust plan sketching. In: Giunchiglia, E., Muscettola, N., Nau, D.S. (eds.) ICAPS, pp. 256–266 (2003)

    Google Scholar 

  15. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: EDOC, pp. 287–300 (2007)

    Google Scholar 

  16. Polyzou, A., Nikolakopoulos, A.N., Karypis, G.: Scholars walk: a Markov chain framework for course recommendation. In: Desmarais, M.C., Lynch, C.F., Merceron, A., Nkambou, R. (eds.) EDM (2019)

    Google Scholar 

  17. Rafiei, M., et al.: Extracting rules from event data for study planning. arXiv preprint arXiv:2310.02735 (2023)

  18. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Boutilier, C. (ed.) IJCAI, pp. 1790–1797 (2009)

    Google Scholar 

  19. Tan, J., Chang, L., Liu, T., Zhao, X.: Attentional autoencoder for course recommendation in MOOC with course relevance. In: CyberC, pp. 190–196 (2020)

    Google Scholar 

  20. Urdaneta-Ponte, M.C., Mendez-Zorrilla, A., Oleagordia-Ruiz, I.: Recommendation systems for education: systematic review. Electronics 10(14), 1611 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support by the Federal Ministry of Education and Research (BMBF) for the joint project AIStudyBuddy (grant no. 16DHBKI016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyunam Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, G., Rafiei, M., Helal, H., Lakemeyer, G., van der Aalst, W.M.P. (2024). Incorporating Behavioral Recommendations Mined from Event Logs into AI Planning. In: Islam, S., Sturm, A. (eds) Intelligent Information Systems. CAiSE 2024. Lecture Notes in Business Information Processing, vol 520. Springer, Cham. https://doi.org/10.1007/978-3-031-61000-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61000-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60999-2

  • Online ISBN: 978-3-031-61000-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics