Skip to main content

Process Variant Analysis Across Continuous Features: A Novel Framework

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2024, EMMSAD 2024)

Abstract

Extracted event data from information systems often contain a variety of process executions making the data complex and difficult to comprehend. Unlike current research which only identifies the variability over time, we focus on other dimensions that may play a role in the performance of the process. This research addresses the challenge of effectively segmenting cases within operational processes based on continuous features, such as duration of cases, and evaluated risk score of cases, which are often overlooked in traditional process analysis. We present a novel approach employing a sliding window technique combined with the earth mover’s distance to detect changes in control flow behavior over continuous dimensions. This approach enables case segmentation, hierarchical merging of similar segments, and pairwise comparison of them, providing a comprehensive perspective on process behavior. We validate our methodology through a real-life case study in collaboration with UWV, the Dutch employee insurance agency, demonstrating its practical applicability. This research contributes to the field by aiding organizations in improving process efficiency, pinpointing abnormal behaviors, and providing valuable inputs for process comparison, and outcome prediction.

This research was supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/aliNorouzifar/process-variants-identification/blob/main/event%20logs/test.xes.

  2. 2.

    https://github.com/aliNorouzifar/process-variants-identification.

  3. 3.

    The analysis of accepted cases is explained in the supplementary material https://github.com/aliNorouzifar/process-variants-identification/blob/main/supplementary%20material/supplementary%20material.pdf.

References

  1. Back, C.O., Simonsen, J.G.: Comparing trace similarity metrics across logs and evaluation measures. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 226–242. Springer, Cham (2023)

    Chapter  Google Scholar 

  2. Brockhoff, T., Uysal, M.S., van der Aalst, W.M.P.: Time-aware concept drift detection using the earth mover’s distance. In: 2020 2nd International Conference on Process Mining (ICPM), pp. 33–40. IEEE (2020)

    Google Scholar 

  3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

    Book  Google Scholar 

  4. Chapela-Campa, D., Mucientes, M., Lama, M.: Understanding complex process models by abstracting infrequent behavior. Future Gener. Comput. Syst. 113, 428–440 (2020)

    Article  Google Scholar 

  5. Chesani, F., et al.: Shape your process: discovering declarative business processes from positive and negative traces taking into account user preferences. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds.) EDOC 2022. LNCS, vol. 13585, pp. 217–234. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17604-3_13

    Chapter  Google Scholar 

  6. De Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)

    Article  Google Scholar 

  7. Hompes, B., Buijs, J., van der Aalst, W.M.P., Dixit, P., Buurman, J.: Discovering deviating cases and process variants using trace clustering. In: Proceedings of the 27th Benelux Conference on Artificial Intelligence (BNAIC), pp. 5–6 (2015)

    Google Scholar 

  8. Leemans, S.J.J., Shabaninejad, S., Goel, K., Khosravi, H., Sadiq, S., Wynn, M.T.: Identifying cohorts: recommending drill-downs based on differences in behaviour for process mining. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 92–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_7

    Chapter  Google Scholar 

  9. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8

    Chapter  Google Scholar 

  10. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng. 29(10), 2140–2154 (2017)

    Article  Google Scholar 

  11. Norouzifar, A., van der Aalst, W.M.P.: Discovering process models that support desired behavior and avoid undesired behavior. In: SAC 2023: The 38th ACM/SIGAPP Symposium on Applied Computing (2023)

    Google Scholar 

  12. Sato, D.M.V., Freitas, S.C.D., Barddal, J.P., Scalabrin, E.E.: A survey on concept drift in process mining. ACM Comput. Surv. 54(9), 189:1–189:38 (2022)

    Google Scholar 

  13. Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl.-Based Syst. 211, 106557 (2021)

    Article  Google Scholar 

  14. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1–17:57 (2019)

    Google Scholar 

  15. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)

    Google Scholar 

  16. Yeshchenko, A., Ciccio, C.D., Mendling, J., Polyvyanyy, A.: Visual drift detection for event sequence data of business processes. IEEE Trans. Vis. Comput. Graph. 28(8), 3050–3068 (2022)

    Article  Google Scholar 

  17. van Zelst, S.J., Cao, Y.: A generic framework for attribute-driven hierarchical trace clustering. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 308–320. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Norouzifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Norouzifar, A., Rafiei, M., Dees, M., van der Aalst, W. (2024). Process Variant Analysis Across Continuous Features: A Novel Framework. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61007-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61006-6

  • Online ISBN: 978-3-031-61007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics