Skip to main content

Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2024, EMMSAD 2024)

Abstract

In engineering informatics, the myriad data types, formats, streaming and storage technologies pose significant challenges in managing data effectively. The problem grows, as new analytics perspectives are emerging from a totally different AI-based tradition. This divide often necessitates the development of custom solutions that link specific data capture methods to particular AI algorithms. Encouraged by the success of object-centric mining models for discrete processes, we look for large clusters of data management practices where novel bridging data models can help navigate the data model divide. We address this question in a two-cycle design science approach. In a first cycle, over 80 actual data model practices from a wide variety of engineering disciplines were analyzed, leading to four candidate fields. In a second cycle, an initial bridging data model for one of these fields was developed and validated wrt some of the found practices. Our findings offer the prospect of significantly streamlining data pipelines, paving the way for enriched AI integration in production engineering, and consequently, a more robust, data-driven manufacturing paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engineering data exchange format for use in industrial automation systems engineering - automation markup language. Standard IEC 62714-1 (2014)

    Google Scholar 

  2. IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams (2016). iSBN: 9781504424219

    Google Scholar 

  3. van der Aalst, W.: Concurrency and objects matter! Disentangling the fabric of real operational processes to create digital twins. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0_1

    Chapter  Google Scholar 

  4. Bader, S., et al.: The international data spaces information model - an ontology for sovereign exchange of digital content. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 176–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_12

    Chapter  Google Scholar 

  5. Baumann, N., et al.: Combining retrieval-augmented generation and few-shot learning for model synthesis of uncommon DSLs. Gesellschaft für Informatik e.V. (2024)

    Google Scholar 

  6. Bazaz, S.M., Lohtander, M., Varis, J.: Availability of manufacturing data resources in digital twins. Procedia Manuf. 51, 1125–1131 (2020)

    Article  Google Scholar 

  7. Berti, A., Koren, I., Adams, J.N., et al.: OCEL (object-centric event log) 2.0 specification. Chair of Process and Data Science, RWTH Aachen University (2023)

    Google Scholar 

  8. Brauner, P., Dalibor, M., Jarke, M., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3(2), 1–32 (2022). Article 15

    Article  Google Scholar 

  9. Brecher, C., Padberg, M., Jarke, M., van der Aalst, W., Schuh, G.: The internet of production: interdisciplinary visions and concepts for the production of tomorrow. In: Brecher, C., Schuh, G., van der Aalst, W., Jarke, M., Piller, F.T., Padberg, M. (eds.) Internet of Production. IDEAS, pp. 3–14. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-44497-5_1

    Chapter  Google Scholar 

  10. Brockhoff, T., Heithoff, M., Koren, I., et al.: Process prediction with digital twins. In: Models@run.time Workshop at MODELS 2021 (2021)

    Google Scholar 

  11. Correia, J., Abel, M., Becker, K.: Data management in digital twins: a systematic literature review. Knowl. Inf. Syst. 65, 3165–3196 (2023)

    Article  Google Scholar 

  12. Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC Analyze the Future (2013)

    Google Scholar 

  13. Geisler, S., Vidal, M.E., Cappiello, C., et al.: Knowledge-driven data ecosystems towards data transparency. ACM J. Data Inf. Qual. (JDIQ) 14(1), 1–13 (2022). Article 3

    Article  Google Scholar 

  14. Gleim, L., Pennekamp, J., Liebenberg, M., et al.: FactDAG: formalizing data interoperability in an internet of production. IEEE Internet Things J. 7(4), 3243–3253 (2020)

    Article  Google Scholar 

  15. Groeger, C.: There is no AI without data. Commun. ACM 64(11), 98–108 (2021)

    Article  Google Scholar 

  16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. Manag. Inf. Syst. 28(1), 75–105 (2004)

    Article  Google Scholar 

  17. Jarke, M.: Data sovereignty and the internet of production. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_34

    Chapter  Google Scholar 

  18. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterizing the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

    Article  Google Scholar 

  19. Lefrançois, M., Garcia-Castro, R., Bouter, C., Poveda-Villalon, M., Daniele, L., Gnabasik, D.: SAREF: the smart applications REFerence ontology (2020)

    Google Scholar 

  20. Lenzerini, M.: Direct and reverse rewriting in data interoperability. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_1

    Chapter  Google Scholar 

  21. Liebenberg, M., Jarke, M.: Information systems engineering with Digital Shadows: concept and use cases in the Internet of Production. Inf. Syst. 114, 102182 (2023)

    Article  Google Scholar 

  22. Lin, S.W., Watson, K., Shao, G., Stojanovic, L., Zarkout, B.: Digital Twin Core Conceptual Models and Services. Industrial IoT Consortium Framework Publication (2023)

    Google Scholar 

  23. Loucopoulos, P., Kavakli, E., Chechina, N.: Requirements engineering for cyber physical production systems. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 276–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_18

    Chapter  Google Scholar 

  24. Merino, J., Xie, X., Moretti, N., Chang, J., Parlikad, A.: Data integration for digital twins in the built environment based on federated data models. In: Smart Infrastructure and Construction, No. 2300002, pp. 1–18. Proceedings of the Institutions of Civil Engineers (2023)

    Google Scholar 

  25. Michael, J., et al.: A digital shadow reference model for worldwide production labs. In: Brecher, C., Schuh, G., van der Aalst, W., Jarke, M., Piller, F.T., Padberg, M. (eds.) Internet of Production. IDEAS, pp. 1–29. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-98062-7_3-3

    Chapter  Google Scholar 

  26. OPC-Foundation: The industrial interoperability standard (2023). https://opcfoundation.org/developer-tools/documents/?type=Specification. Accessed 27 July 2023

  27. Pennekamp, J., Henze, M., Schmidt, S., et al.: Dataflow challenges in an internet of production: a security & privacy perspective. In: Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy, pp. 27–38. ACM (2019)

    Google Scholar 

  28. Plebani, P., Salnitri, M., Vitali, M.: Fog computing and data as a service: a goal-based modeling approach to enable effective data movement. In: Krogstie, J., Reijers, H. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_13

    Chapter  Google Scholar 

  29. Stary, C.: Digital twin generation: re-conceptualizing agent systems for behavior-centered cyber-physical system development. Sensors 21(1096), 1–24 (2021)

    Google Scholar 

  30. Tacke Genannt Unterberg, L., Koren, I., van der Aalst, W.M.: Maximizing reuse and interoperability in industry 4.0 with a minimal data exchange format for machine data. In: Modellierung 2024, pp. 103–118. Gesellschaft für Informatik e.V., Bonn (2024)

    Google Scholar 

  31. Vila, M., Sancho, M.R., Teniente, E.: Modeling context-aware events and responses in an IoT environment. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 71–87. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34560-9_5

    Chapter  Google Scholar 

  32. Volz, F., Sutschet, G., Stojanovic, L., Uslaender, T.: On the role of digital twins in data spaces. Sensors 23(7601), 1–21 (2023)

    Google Scholar 

  33. Ziegler, J., Reimann, P., Keller, F., Mitschang, B.: A metadata model to connect isolated data silos and activities of the CAE domain. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 213–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_13

    Chapter  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet of Production - 390621612. We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research. We express our gratitude to all participants in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Koren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koren, I. et al. (2024). Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61007-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61006-6

  • Online ISBN: 978-3-031-61007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics