Abstract
In engineering informatics, the myriad data types, formats, streaming and storage technologies pose significant challenges in managing data effectively. The problem grows, as new analytics perspectives are emerging from a totally different AI-based tradition. This divide often necessitates the development of custom solutions that link specific data capture methods to particular AI algorithms. Encouraged by the success of object-centric mining models for discrete processes, we look for large clusters of data management practices where novel bridging data models can help navigate the data model divide. We address this question in a two-cycle design science approach. In a first cycle, over 80 actual data model practices from a wide variety of engineering disciplines were analyzed, leading to four candidate fields. In a second cycle, an initial bridging data model for one of these fields was developed and validated wrt some of the found practices. Our findings offer the prospect of significantly streamlining data pipelines, paving the way for enriched AI integration in production engineering, and consequently, a more robust, data-driven manufacturing paradigm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engineering data exchange format for use in industrial automation systems engineering - automation markup language. Standard IEC 62714-1 (2014)
IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams (2016). iSBN: 9781504424219
van der Aalst, W.: Concurrency and objects matter! Disentangling the fabric of real operational processes to create digital twins. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0_1
Bader, S., et al.: The international data spaces information model - an ontology for sovereign exchange of digital content. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 176–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_12
Baumann, N., et al.: Combining retrieval-augmented generation and few-shot learning for model synthesis of uncommon DSLs. Gesellschaft für Informatik e.V. (2024)
Bazaz, S.M., Lohtander, M., Varis, J.: Availability of manufacturing data resources in digital twins. Procedia Manuf. 51, 1125–1131 (2020)
Berti, A., Koren, I., Adams, J.N., et al.: OCEL (object-centric event log) 2.0 specification. Chair of Process and Data Science, RWTH Aachen University (2023)
Brauner, P., Dalibor, M., Jarke, M., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3(2), 1–32 (2022). Article 15
Brecher, C., Padberg, M., Jarke, M., van der Aalst, W., Schuh, G.: The internet of production: interdisciplinary visions and concepts for the production of tomorrow. In: Brecher, C., Schuh, G., van der Aalst, W., Jarke, M., Piller, F.T., Padberg, M. (eds.) Internet of Production. IDEAS, pp. 3–14. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-44497-5_1
Brockhoff, T., Heithoff, M., Koren, I., et al.: Process prediction with digital twins. In: Models@run.time Workshop at MODELS 2021 (2021)
Correia, J., Abel, M., Becker, K.: Data management in digital twins: a systematic literature review. Knowl. Inf. Syst. 65, 3165–3196 (2023)
Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC Analyze the Future (2013)
Geisler, S., Vidal, M.E., Cappiello, C., et al.: Knowledge-driven data ecosystems towards data transparency. ACM J. Data Inf. Qual. (JDIQ) 14(1), 1–13 (2022). Article 3
Gleim, L., Pennekamp, J., Liebenberg, M., et al.: FactDAG: formalizing data interoperability in an internet of production. IEEE Internet Things J. 7(4), 3243–3253 (2020)
Groeger, C.: There is no AI without data. Commun. ACM 64(11), 98–108 (2021)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. Manag. Inf. Syst. 28(1), 75–105 (2004)
Jarke, M.: Data sovereignty and the internet of production. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 549–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_34
Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterizing the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)
Lefrançois, M., Garcia-Castro, R., Bouter, C., Poveda-Villalon, M., Daniele, L., Gnabasik, D.: SAREF: the smart applications REFerence ontology (2020)
Lenzerini, M.: Direct and reverse rewriting in data interoperability. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 3–13. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_1
Liebenberg, M., Jarke, M.: Information systems engineering with Digital Shadows: concept and use cases in the Internet of Production. Inf. Syst. 114, 102182 (2023)
Lin, S.W., Watson, K., Shao, G., Stojanovic, L., Zarkout, B.: Digital Twin Core Conceptual Models and Services. Industrial IoT Consortium Framework Publication (2023)
Loucopoulos, P., Kavakli, E., Chechina, N.: Requirements engineering for cyber physical production systems. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 276–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21290-2_18
Merino, J., Xie, X., Moretti, N., Chang, J., Parlikad, A.: Data integration for digital twins in the built environment based on federated data models. In: Smart Infrastructure and Construction, No. 2300002, pp. 1–18. Proceedings of the Institutions of Civil Engineers (2023)
Michael, J., et al.: A digital shadow reference model for worldwide production labs. In: Brecher, C., Schuh, G., van der Aalst, W., Jarke, M., Piller, F.T., Padberg, M. (eds.) Internet of Production. IDEAS, pp. 1–29. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-98062-7_3-3
OPC-Foundation: The industrial interoperability standard (2023). https://opcfoundation.org/developer-tools/documents/?type=Specification. Accessed 27 July 2023
Pennekamp, J., Henze, M., Schmidt, S., et al.: Dataflow challenges in an internet of production: a security & privacy perspective. In: Proceedings of the ACM Workshop on Cyber-Physical Systems Security & Privacy, pp. 27–38. ACM (2019)
Plebani, P., Salnitri, M., Vitali, M.: Fog computing and data as a service: a goal-based modeling approach to enable effective data movement. In: Krogstie, J., Reijers, H. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_13
Stary, C.: Digital twin generation: re-conceptualizing agent systems for behavior-centered cyber-physical system development. Sensors 21(1096), 1–24 (2021)
Tacke Genannt Unterberg, L., Koren, I., van der Aalst, W.M.: Maximizing reuse and interoperability in industry 4.0 with a minimal data exchange format for machine data. In: Modellierung 2024, pp. 103–118. Gesellschaft für Informatik e.V., Bonn (2024)
Vila, M., Sancho, M.R., Teniente, E.: Modeling context-aware events and responses in an IoT environment. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 71–87. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34560-9_5
Volz, F., Sutschet, G., Stojanovic, L., Uslaender, T.: On the role of digital twins in data spaces. Sensors 23(7601), 1–21 (2023)
Ziegler, J., Reimann, P., Keller, F., Mitschang, B.: A metadata model to connect isolated data silos and activities of the CAE domain. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 213–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_13
Acknowledgements
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2023 Internet of Production - 390621612. We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research. We express our gratitude to all participants in our study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Koren, I. et al. (2024). Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-61007-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61006-6
Online ISBN: 978-3-031-61007-3
eBook Packages: Computer ScienceComputer Science (R0)