Abstract
Declarative model minimization is a computationally expensive task. State-of-the-art approximation techniques rely on hard-coded heuristic functions based on properties of constraint templates, which requires rework when new templates are added and cannot handle models expressed as arbitrary logical formulas. We present a precision-based heuristic function that requires no pre-configuration and can handle arbitrary constraints, provided they can be mapped to a finite automaton. The approach is evaluated on real-world datasets, where it outperforms state-of-the-art methods while accepting a wider range of inputs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
[6] introduces the Linear Dynamic Logic over Finite Traces (LDL\(_f\)), which is as expressive as DFAs. We do not discuss LDL\(_f\) formulas, but we notice that methods presented here work with arbitrary DFAs and hence are directly applicable to them.
- 2.
The datasets can be found at github.com/EduardoGoulart1/BPMDS24.
- 3.
Extracted from github.com/cdc08x/MINERful/commit/8311258.
References
Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, pp. 55–64 (2011)
Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. e-Bus. Manage. 13 (2014)
Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., Rosa, M.L.: Measuring fitness and precision of automatically discovered process models: a principled and scalable approach. IEEE Trans. Knowl. Data Eng. 34(4), 1870–1888 (2022)
Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of Traces in declarative process mining: the Janus LTLp\(_f\) approach. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_8
Chatain, T., Carmona, J.: Anti-alignments in conformance checking – the dark side of process models. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 240–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4_15
De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 854–860. IJCAI 2013, AAAI Press (2013)
Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)
Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a business constraint to an event log. Inf. Syst. 78, 144–161 (2018)
Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4) (2015)
De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_1
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17, 599–631 (2016)
Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_18
Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance, vol. 6336, pp. 211–226 (2010)
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–287 (2007)
Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone precision and recall measures for comparing executions and specifications of dynamic systems. ACM Trans. Softw. Eng. Methodol. 29(3) (2020)
Ramezani, E., Fahland, D., van Dongen, B., van der Aalst, W.M.P.: Diagnostic information in temporal compliance checking. Technical report, BPM Cent. Rep (2) (2012)
Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36, 1009–1025 (2011)
Acknowledgements
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Goulart Rocha, E., van der Aalst, W.M.P. (2024). Precision-Guided Minimization of Arbitrary Declarative Process Models. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-61007-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61006-6
Online ISBN: 978-3-031-61007-3
eBook Packages: Computer ScienceComputer Science (R0)