Skip to main content

Precision-Guided Minimization of Arbitrary Declarative Process Models

  • Conference paper
  • First Online:
Enterprise, Business-Process and Information Systems Modeling (BPMDS 2024, EMMSAD 2024)

Abstract

Declarative model minimization is a computationally expensive task. State-of-the-art approximation techniques rely on hard-coded heuristic functions based on properties of constraint templates, which requires rework when new templates are added and cannot handle models expressed as arbitrary logical formulas. We present a precision-based heuristic function that requires no pre-configuration and can handle arbitrary constraints, provided they can be mapped to a finite automaton. The approach is evaluated on real-world datasets, where it outperforms state-of-the-art methods while accepting a wider range of inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [6] introduces the Linear Dynamic Logic over Finite Traces (LDL\(_f\)), which is as expressive as DFAs. We do not discuss LDL\(_f\) formulas, but we notice that methods presented here work with arbitrary DFAs and hence are directly applicable to them.

  2. 2.

    The datasets can be found at github.com/EduardoGoulart1/BPMDS24.

  3. 3.

    Extracted from github.com/cdc08x/MINERful/commit/8311258.

References

  1. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object Computing Conference, pp. 55–64 (2011)

    Google Scholar 

  2. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. e-Bus. Manage. 13 (2014)

    Google Scholar 

  3. Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., Rosa, M.L.: Measuring fitness and precision of automatically discovered process models: a principled and scalable approach. IEEE Trans. Knowl. Data Eng. 34(4), 1870–1888 (2022)

    Google Scholar 

  4. Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of Traces in declarative process mining: the Janus LTLp\(_f\) approach. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_8

    Chapter  Google Scholar 

  5. Chatain, T., Carmona, J.: Anti-alignments in conformance checking – the dark side of process models. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 240–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4_15

    Chapter  Google Scholar 

  6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 854–860. IJCAI 2013, AAAI Press (2013)

    Google Scholar 

  7. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

    Article  Google Scholar 

  8. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a business constraint to an event log. Inf. Syst. 78, 144–161 (2018)

    Article  Google Scholar 

  9. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4) (2015)

    Google Scholar 

  10. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_1

    Chapter  Google Scholar 

  11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17, 599–631 (2016)

    Article  Google Scholar 

  12. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_18

    Chapter  Google Scholar 

  13. Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance, vol. 6336, pp. 211–226 (2010)

    Google Scholar 

  14. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–287 (2007)

    Google Scholar 

  15. Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Monotone precision and recall measures for comparing executions and specifications of dynamic systems. ACM Trans. Softw. Eng. Methodol. 29(3) (2020)

    Google Scholar 

  16. Ramezani, E., Fahland, D., van Dongen, B., van der Aalst, W.M.P.: Diagnostic information in temporal compliance checking. Technical report, BPM Cent. Rep (2) (2012)

    Google Scholar 

  17. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36, 1009–1025 (2011)

    Google Scholar 

Download references

Acknowledgements

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Goulart Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goulart Rocha, E., van der Aalst, W.M.P. (2024). Precision-Guided Minimization of Arbitrary Declarative Process Models. In: van der Aa, H., Bork, D., Schmidt, R., Sturm, A. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2024 2024. Lecture Notes in Business Information Processing, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-61007-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61007-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61006-6

  • Online ISBN: 978-3-031-61007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics