Abstract
This paper investigates the potential of combining food ontologies and AI in the food sector for enhanced sustainability. We argue that this combination can foster sustainable food systems, underscoring how semantic structures and AI can facilitate precision agriculture, sustainable food choices, personalized diets, and climate change mitigation. Our goal is to discuss how these innovative technologies can be harnessed to better understand, manage, and ultimately transform the food domain for a sustainable future. As a first step towards achieving this goal, we provide an overview of prominent food ontologies and knowledge graphs in the food domain highlighting their structures and focal points, and we illustrate the value of ontological reasoning through practical food domain examples, using SPARQL queries and ontological reasoning for insightful knowledge derivation. We also discuss how to combine AI and ontologies to create new knowledge resources for improved data integration and management.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
See: https://foodon.org/.
- 3.
- 4.
- 5.
- 6.
See release en_core_web_sm-3.6.0 Spacy model: https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.6.0.
References
Abbas, F., Najjar, N., Wilson, D.: Exploring the effect of recipe representation on critique-based conversational recommendation. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. LNCS, vol. 13405, pp. 96–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_7
Adrian, W.T., Pyrczak, K., Kluza, K., Ligȩza, A.: Food ontologies and ontological reasoning for sustainability. In: Nowaczyk, S., et al. (eds.) ECAI 2023. CCIS, vol. 1948, pp. 262–268. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-50485-3_28
Aggarwal, A., Tam, C.C., Wu, D., Li, X., Qiao, S.: Artificial intelligence-based chatbots for promoting health behavioral changes: systematic review. J. Med. Internet Res. 25, e40789 (2023)
Babaie, H., Davarpanah, A., Dhakal, N.: Projecting pathways to food-energy-water systems sustainability through ontology. Environ. Eng. Sci. 36(7), 808–819 (2019)
Chen, Y.Z.J.: A statistical machine learning approach to generating graph structures from food recipes (2017)
Dooley, D.M., Griffiths, E.J., Gosal, G.S., et al.: Foodon: a harmonized food ontology to increase global food traceability, quality control and data integration. NPJ Sci. Food 2(1), 23 (2018). https://doi.org/10.1038/s41538-018-0032-6
d’Aquin, M., Motta, E., Nikolov, A., Thomas, K.: Realizing networks of proactive smart products. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 337–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_30
World Commission on Environment and Development: Our Common Future. Oxford Paperbacks, Oxford University Press (1987)
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)
Griffiths, E.J., Dooley, D.M., Buttigieg, P.L., Hoehndorf, R., Brinkman, F.S., Hsiao, W.W.: Foodon: a global farm-to-fork food ontology. In: ICBO/BioCreative, pp. 1–2 (2016)
Haussmann, S., et al.: FoodKG: a semantics-driven knowledge graph for food recommendation. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 146–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_10
Holden, N.M., White, E.P., Lange, M.C., Oldfield, T.L.: Review of the sustainability of food systems and transition using the internet of food. NPJ Sci. Food 2(1), 18 (2018)
Jachimczyk, B., Tkaczyk, R., Piotrowski, T., Johansson, S., Kulesza, W.: IoT-based dairy supply chain-an ontological approach. Elektronika ir Elektrotechnika 27(1), 71–83 (2021)
Joshi, S., et al.: Artificial intelligence assisted food science and nutrition perspective for smart nutrition research and healthcare. Syst. Microbiol. Biomanufact. 1–16 (2023)
Ławrynowicz, A., Wróblewska, A., Adrian, W.T., Kulczyński, B., Gramza-Michałowska, A.: Food recipe ingredient substitution ontology design pattern. Sensors 22(3), 1095 (2022)
Mazac, R., Tuomisto, H.L.: The post-anthropocene diet: navigating future diets for sustainable food systems. Sustainability 12(6), 2355 (2020)
Mori, S., Sasada, T., Yamakata, Y., Yoshino, K.: A machine learning approach to recipe text processing (2012)
Mortazavi, B.J., Gutierrez-Osuna, R.: A review of digital innovations for diet monitoring and precision nutrition. J. Diabetes Sci. Technol. 17(1), 217–223 (2023)
Ngo, Q.H., Le-Khac, N.A., Kechadi, T.: Ontology based approach for precision agriculture. In: Kaenampornpan, M., Malaka, R., Nguyen, D., Schwind, N. (eds.) MIWAI 2018. LNCS, vol. 11248, pp. 175–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03014-8_15
Popov, P.: The power of ontologies and knowledge graphs: practical examples from the financial industry (2023). https://www.ontotext.com/blog/the-power-of-ontologies-and-knowledge-graphs-for-the-financial-industry/
Popovski, G., Seljak, B.K., Eftimov, T.: A survey of named-entity recognition methods for food information extraction. IEEE Access 8, 31586–31594 (2020)
Popovski, G., Seljak, B.K., Eftimov, T.: Foodbase corpus: a new resource of annotated food entities. Database 2019, baz121 (2019). https://doi.org/10.1093/database/baz121
UN Publications: The Sustainable Development Goals Report 2023. United Nations Fund for Population Activities (2023)
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)
Stojanov, R., et al.: Food waste ontology: a formal description of knowledge from the domain of food waste. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5190–5194. IEEE (2019)
Vitali, F., et al.: ONS: an ontology for a standardized description of interventions and observational studies in nutrition. Genes Nutr. 13(1), 1–9 (2018)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
Wróblewska, A., Kaliska, A., Pawłowski, M., Wiśniewski, D., Sosnowski, W., Ławrynowicz, A.: Tasteset – recipe dataset and food entities recognition benchmark (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Adrian, W.T., Ignacyk, J., Pyrczak, K., Kluza, K., Wiśniewski, P., Ligęza, A. (2024). Supporting Food Computing with Ontologies and Artificial Intelligence Methods for Sustainability. In: Mercier-Laurent, E., Kayakutlu, G., Owoc, M.L., Wahid, A., Mason, K. (eds) Artificial Intelligence for Knowledge Management, Energy and Sustainability. AI4KMES 2023. IFIP Advances in Information and Communication Technology, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-031-61069-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-61069-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61068-4
Online ISBN: 978-3-031-61069-1
eBook Packages: Computer ScienceComputer Science (R0)