Skip to main content

Supporting Food Computing with Ontologies and Artificial Intelligence Methods for Sustainability

  • Conference paper
  • First Online:
Artificial Intelligence for Knowledge Management, Energy and Sustainability (AI4KMES 2023)

Abstract

This paper investigates the potential of combining food ontologies and AI in the food sector for enhanced sustainability. We argue that this combination can foster sustainable food systems, underscoring how semantic structures and AI can facilitate precision agriculture, sustainable food choices, personalized diets, and climate change mitigation. Our goal is to discuss how these innovative technologies can be harnessed to better understand, manage, and ultimately transform the food domain for a sustainable future. As a first step towards achieving this goal, we provide an overview of prominent food ontologies and knowledge graphs in the food domain highlighting their structures and focal points, and we illustrate the value of ontological reasoning through practical food domain examples, using SPARQL queries and ontological reasoning for insightful knowledge derivation. We also discuss how to combine AI and ontologies to create new knowledge resources for improved data integration and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://ourworldindata.org/grapher/area-land-needed-to-global-oil.

  2. 2.

    See: https://foodon.org/.

  3. 3.

    See https://wiki.openfoodfacts.org/Ingredients_ontology.

  4. 4.

    See http://purl.obolibrary.org/obo/FOODON_00002473.

  5. 5.

    See https://cosylab.iiitd.edu.in/.

  6. 6.

    See release en_core_web_sm-3.6.0 Spacy model: https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-3.6.0.

References

  1. Abbas, F., Najjar, N., Wilson, D.: Exploring the effect of recipe representation on critique-based conversational recommendation. In: Keane, M.T., Wiratunga, N. (eds.) ICCBR 2022. LNCS, vol. 13405, pp. 96–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_7

    Chapter  Google Scholar 

  2. Adrian, W.T., Pyrczak, K., Kluza, K., Ligȩza, A.: Food ontologies and ontological reasoning for sustainability. In: Nowaczyk, S., et al. (eds.) ECAI 2023. CCIS, vol. 1948, pp. 262–268. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-50485-3_28

    Chapter  Google Scholar 

  3. Aggarwal, A., Tam, C.C., Wu, D., Li, X., Qiao, S.: Artificial intelligence-based chatbots for promoting health behavioral changes: systematic review. J. Med. Internet Res. 25, e40789 (2023)

    Article  Google Scholar 

  4. Babaie, H., Davarpanah, A., Dhakal, N.: Projecting pathways to food-energy-water systems sustainability through ontology. Environ. Eng. Sci. 36(7), 808–819 (2019)

    Article  Google Scholar 

  5. Chen, Y.Z.J.: A statistical machine learning approach to generating graph structures from food recipes (2017)

    Google Scholar 

  6. Dooley, D.M., Griffiths, E.J., Gosal, G.S., et al.: Foodon: a harmonized food ontology to increase global food traceability, quality control and data integration. NPJ Sci. Food 2(1), 23 (2018). https://doi.org/10.1038/s41538-018-0032-6

    Article  Google Scholar 

  7. d’Aquin, M., Motta, E., Nikolov, A., Thomas, K.: Realizing networks of proactive smart products. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 337–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_30

    Chapter  Google Scholar 

  8. World Commission on Environment and Development: Our Common Future. Oxford Paperbacks, Oxford University Press (1987)

    Google Scholar 

  9. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

    Article  Google Scholar 

  10. Griffiths, E.J., Dooley, D.M., Buttigieg, P.L., Hoehndorf, R., Brinkman, F.S., Hsiao, W.W.: Foodon: a global farm-to-fork food ontology. In: ICBO/BioCreative, pp. 1–2 (2016)

    Google Scholar 

  11. Haussmann, S., et al.: FoodKG: a semantics-driven knowledge graph for food recommendation. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 146–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_10

    Chapter  Google Scholar 

  12. Holden, N.M., White, E.P., Lange, M.C., Oldfield, T.L.: Review of the sustainability of food systems and transition using the internet of food. NPJ Sci. Food 2(1), 18 (2018)

    Article  Google Scholar 

  13. Jachimczyk, B., Tkaczyk, R., Piotrowski, T., Johansson, S., Kulesza, W.: IoT-based dairy supply chain-an ontological approach. Elektronika ir Elektrotechnika 27(1), 71–83 (2021)

    Article  Google Scholar 

  14. Joshi, S., et al.: Artificial intelligence assisted food science and nutrition perspective for smart nutrition research and healthcare. Syst. Microbiol. Biomanufact. 1–16 (2023)

    Google Scholar 

  15. Ławrynowicz, A., Wróblewska, A., Adrian, W.T., Kulczyński, B., Gramza-Michałowska, A.: Food recipe ingredient substitution ontology design pattern. Sensors 22(3), 1095 (2022)

    Article  Google Scholar 

  16. Mazac, R., Tuomisto, H.L.: The post-anthropocene diet: navigating future diets for sustainable food systems. Sustainability 12(6), 2355 (2020)

    Article  Google Scholar 

  17. Mori, S., Sasada, T., Yamakata, Y., Yoshino, K.: A machine learning approach to recipe text processing (2012)

    Google Scholar 

  18. Mortazavi, B.J., Gutierrez-Osuna, R.: A review of digital innovations for diet monitoring and precision nutrition. J. Diabetes Sci. Technol. 17(1), 217–223 (2023)

    Article  Google Scholar 

  19. Ngo, Q.H., Le-Khac, N.A., Kechadi, T.: Ontology based approach for precision agriculture. In: Kaenampornpan, M., Malaka, R., Nguyen, D., Schwind, N. (eds.) MIWAI 2018. LNCS, vol. 11248, pp. 175–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03014-8_15

    Chapter  Google Scholar 

  20. Popov, P.: The power of ontologies and knowledge graphs: practical examples from the financial industry (2023). https://www.ontotext.com/blog/the-power-of-ontologies-and-knowledge-graphs-for-the-financial-industry/

  21. Popovski, G., Seljak, B.K., Eftimov, T.: A survey of named-entity recognition methods for food information extraction. IEEE Access 8, 31586–31594 (2020)

    Article  Google Scholar 

  22. Popovski, G., Seljak, B.K., Eftimov, T.: Foodbase corpus: a new resource of annotated food entities. Database 2019, baz121 (2019). https://doi.org/10.1093/database/baz121

  23. UN Publications: The Sustainable Development Goals Report 2023. United Nations Fund for Population Activities (2023)

    Google Scholar 

  24. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  25. Stojanov, R., et al.: Food waste ontology: a formal description of knowledge from the domain of food waste. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5190–5194. IEEE (2019)

    Google Scholar 

  26. Vitali, F., et al.: ONS: an ontology for a standardized description of interventions and observational studies in nutrition. Genes Nutr. 13(1), 1–9 (2018)

    Article  MathSciNet  Google Scholar 

  27. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

    Article  Google Scholar 

  28. Wróblewska, A., Kaliska, A., Pawłowski, M., Wiśniewski, D., Sosnowski, W., Ławrynowicz, A.: Tasteset – recipe dataset and food entities recognition benchmark (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weronika T. Adrian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adrian, W.T., Ignacyk, J., Pyrczak, K., Kluza, K., Wiśniewski, P., Ligęza, A. (2024). Supporting Food Computing with Ontologies and Artificial Intelligence Methods for Sustainability. In: Mercier-Laurent, E., Kayakutlu, G., Owoc, M.L., Wahid, A., Mason, K. (eds) Artificial Intelligence for Knowledge Management, Energy and Sustainability. AI4KMES 2023. IFIP Advances in Information and Communication Technology, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-031-61069-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61069-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61068-4

  • Online ISBN: 978-3-031-61069-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics