Skip to main content

A Decentralized Collision Avoidance Algorithm for Individual and Collaborative UAVs

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

This paper presents an innovative approach to enhance collision avoidance in a group of Unmanned Aerial Vehicles (UAVs) connected by a cable. The proposed algorithm leverages Artificial Potential Fields (APFs) to navigate UAVs through complex environments while taking into account the constraints imposed by the interconnecting cable. The article outlines the algorithm’s theoretical foundation, implementation details, and provides comprehensive simulation results to demonstrate its efficacy in an experiment. The findings contribute to advancing the field of UAV swarm coordination and collision avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Estevez, J., Lopez-Guede, J.M., Graña, M.: Quasi-stationary state transportation of a hose with quadrotors. Robot. Auton. Syst. 63(Part 2(0)), 187–194 (2015). Cognition-oriented Advanced Robotic Systems

    Article  Google Scholar 

  2. Estevez, J., Lopez-Guede, J.M., Graña, M.: Particle swarm optimization quadrotor control for cooperative aerial transportation of deformable linear objects. Cybern. Syst. 47(1–2), 4–16 (2016)

    Article  Google Scholar 

  3. Estevez, J., Garate, G., Lopez-Guede, J.M., Larrea, M.: Review of aerial transportation of suspended-cable payloads with quadrotors. Drones 8(2), 35 (2024)

    Article  Google Scholar 

  4. Bahabry, A., Wan, X., Ghazzai, H., Menouar, H., Vesonder, G., Massoud, Y.: Low-altitude navigation for multi-rotor drones in urban areas. IEEE Access 7, 87716–87731 (2019)

    Article  Google Scholar 

  5. Cicala, M., D’Amato, E., Notaro, I., Mattei, M.: Distributed UAV state estimation in UTM context. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 557–562. IEEE (2019)

    Google Scholar 

  6. Huang, Y., Tang, J., Lao, S.: Collision avoidance method for self-organizing unmanned aerial vehicle flights. IEEE Access 7, 85536–85547 (2019)

    Article  Google Scholar 

  7. Górriz, J.M., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fus. 100, 101945 (2023)

    Article  Google Scholar 

  8. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)

    Google Scholar 

  9. Duan, H., Zhang, X., Wu, J., Ma, G.: Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments. J. Bionic Eng. 6(2), 161–173 (2009)

    Article  Google Scholar 

  10. Sahingoz, O.K.: Generation of Bezier curve-based flyable trajectories for multi-UAV systems with parallel genetic algorithm. J. Intell. Robot. Syst. 74, 499–511 (2014). https://doi.org/10.1007/s10846-013-9968-6

    Article  Google Scholar 

  11. Mehdi, S.B., Cichella, V., Marinho, T., Hovakimyan, N.: Collision avoidance in multi-vehicle cooperative missions using speed adjustment. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2152–2157. IEEE (2017)

    Google Scholar 

  12. Ioan, D., Prodan, I., Olaru, S., Stoican, F., Niculescu, S.-I.: Mixed-integer programming in motion planning. Annu. Rev. Control. 51, 65–87 (2021)

    Article  MathSciNet  Google Scholar 

  13. Morgan, D., Chung, S.-J., Hadaegh, F.Y.: Model predictive control of swarms of spacecraft using sequential convex programming. J. Guidance Control Dyn. 37(6), 1725–1740 (2014)

    Article  Google Scholar 

  14. Schoels, T., Palmieri, L., Arras, K.O., Diehl, M.: An NMPC approach using convex inner approximations for online motion planning with guaranteed collision avoidance. arXiv arXiv:1909.08267 (2019)

  15. Heidari, H., Saska, M.: Collision-free trajectory planning of multi-rotor UAVs in a wind condition based on modified potential field. Mech. Mach. Theor. 156, 104140 (2021)

    Article  Google Scholar 

  16. Pizetta, I.H.B., Brandão, A.S., Sarcinelli-Filho, M.: Avoiding obstacles in cooperative load transportation. ISA Trans. 91, 253–261 (2019)

    Article  Google Scholar 

  17. Jackson, B.E., Howell, T.A., Shah, K., Schwager, M., Manchester, Z.: Scalable cooperative transport of cable-suspended loads with UAVs using distributed trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3368–3374 (2020)

    Article  Google Scholar 

  18. Gimenez, J., Gandolfo, D.C., Salinas, L.R., Rosales, C., Carelli, R.: Multi-objective control for cooperative payload transport with rotorcraft UAVs. ISA Trans. 80, 491–502 (2018)

    Article  Google Scholar 

  19. Garriga-Casanovas, A., Rodriguez y Baena, F.: Complete follow-the-leader kinematics using concentric tube robots. Int. J. Robot. Res. 37(1), 197–222 (2018)

    Article  Google Scholar 

  20. Sun, J., Tang, J., Lao, S.: Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm. IEEE Access 5, 18382–18390 (2017)

    Article  Google Scholar 

  21. Iswanto, M.A., Wahyunggoro, O., Cahyadi, A.I.: Artificial potential field algorithm implementation for quadrotor path planning. Int. J. Adv. Comput. Sci. Appl. 10(8), 575–585 (2019)

    Google Scholar 

  22. Estevez, J., Graña, M., Lopez-Guede, J.M.: Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects. Integr. Comput. Aided Eng. 24(1), 41–55 (2017)

    Article  Google Scholar 

  23. Pruner, E., Necsulescu, D., Sasiadek, J., Kim, B.: Control of decentralized geometric formations of mobile robots. In: 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 627–632. IEEE (2012)

    Google Scholar 

Download references

The work in this paper has been partially supported by FEDER funds for the MICIN project PID2020-116346GBI00, research funds from the Basque Government as the Grupo de Inteligencia Computacional, Universidad del Pais Vasco, UPV/EHU with code IT1689-22. Additionally, the authors participate in Elkartek projects KK-2022/00051 and KK-2021/00070. Authors have also received support by Fundacion Vitoria-Gasteiz Araba Mobility Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Estevez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Estevez, J., Caballero-Martin, D., Lopez-Guede, J.M., Graña, M. (2024). A Decentralized Collision Avoidance Algorithm for Individual and Collaborative UAVs. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics