Skip to main content

Improved Surface Defect Classification from a Simple Convolutional Neural Network by Image Preprocessing and Data Augmentation

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

Convolutional neural networks (CNNs) play an important role in an increasing number of image processing tasks. There is an obvious demand to improve their classification performance and efficiency. Current research in this area tends to focus on developing increasingly complex models and algorithms to achieve this end. However, research into computer vision techniques and data augmentation tends to be neglected. This paper demonstrates that even a very simple CNN model achieves high performance in surface defect classification on the NEU dataset thanks to image preprocessing and data augmentation. The initial F1-score of 0.9646 without image preprocessing increases to 0.9727 when preprocessing is carried out. The simple CNN then achieves an F1-score of 0.9854 after data augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chazhoor, A., Ho, E., Gao, B., Woo, W.: A review and benchmark on state-of-the-art steel defects detection. SN Comput. Sci. 5, 114 (2024)

    Article  Google Scholar 

  2. Cumbajin, E., et al.: A systematic review on deep learning with CNNs applied to surface defect detection. J. Imaging 9(10), 193 (2023)

    Article  Google Scholar 

  3. Cumbajin, E., et al.: A real-time automated defect detection system for ceramic pieces manufacturing process based on computer vision with deep learning. Sensors 24(1), 232 (2024)

    Article  Google Scholar 

  4. Garrido-Hidalgo, C., Roda-Sanchez, L., Fernández-Caballero, A., Olivares, T., Ramírez, F.J.: Internet-of-Things framework for scalable end-of-life condition monitoring in remanufacturing. Integr. Comput. Aided Eng. 31(1), 1–17 (2024)

    Article  Google Scholar 

  5. Gómez-Sirvent, J.L., de la Rosa, F.L., Sánchez-Reolid, R., Morales, R., Fernández-Caballero, A.: Defect classification on semiconductor wafers using Fisher vector and visual vocabularies coding. Measurement 202, 111872 (2022)

    Google Scholar 

  6. Górriz, J.M., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fus. 100, 101945 (2023)

    Article  Google Scholar 

  7. He, X., Chang, Z., Zhang, L., Xu, H., Chen, H., Luo, Z.: A survey of defect detection applications based on generative adversarial networks. IEEE Access 10, 113493–113512 (2022)

    Article  Google Scholar 

  8. Huang, S.H., Pan, Y.C.: Automated visual inspection in the semiconductor industry: a survey. Comput. Ind. 66, 1–10 (2015)

    Article  Google Scholar 

  9. Iannino, V., et al.: A hybrid approach for improving the flexibility of production scheduling in flat steel industry. Integr. Comput. Aided Eng. 29(4), 367–387 (2022)

    Article  Google Scholar 

  10. Jha, S.B., Babiceanu, R.F.: Deep CNN-based visual defect detection: survey of current literature. Comput. Ind. 148, 103911 (2023)

    Article  Google Scholar 

  11. Lin, J., Ma, L., Yao, Y.: A spectrum-domain instance segmentation model for casting defects. Integr. Comput. Aided Eng. 29(1), 63–82 (2022)

    Article  Google Scholar 

  12. de la Rosa, F.L., Gómez-Sirvent, J.L., Morales, R., Sánchez-Reolid, R., Fernández-Caballero, A.: A deep residual neural network for semiconductor defect classification in imbalanced scanning electron microscope datasets. Appl. Soft Comput. 131, 109743 (2022)

    Article  Google Scholar 

  13. de la Rosa, F.L., Gómez-Sirvent, J.L., Morales, R., Sánchez-Reolid, R., Fernández-Caballero, A.: Defect detection and classification on semiconductor wafers using two-stage geometric transformation-based data augmentation and SqueezeNet lightweight convolutional neural network. Comput. Ind. Eng. 183, 109549 (2023)

    Article  Google Scholar 

  14. de la Rosa, F.L., Gómez-Sirvent, J.L., Sánchez-Reolid, R., Morales, R., Fernández-Caballero, A.: Geometric transformation-based data augmentation on defect classification of segmented images of semiconductor materials using a ResNet50 convolutional neural network. Exp. Syst. Appl. 206, 117731 (2022)

    Article  Google Scholar 

  15. de la Rosa, F.L., Sánchez-Reolid, R., Gómez-Sirvent, J.L., Morales, R., Fernández-Caballero, A.: A review on machine and deep learning for semiconductor defect classification in scanning electron microscope images. Appl. Sci. 11(20), 9508 (2021)

    Article  Google Scholar 

  16. Pang, W., Tan, Z.: A steel surface defect detection model based on graph neural networks. Meas. Sci. Technol. 35(4), 046201 (2024)

    Article  Google Scholar 

  17. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  18. Roda-Sanchez, L., Olivares, T., Garrido-Hidalgo, C., de la Vara, J.L., Fernández-Caballero, A.: Human-robot interaction in Industry 4.0 based on an Internet of Things real-time gesture control system. Integr. Comput. Aided Eng. 28(2), 159–175 (2021)

    Article  Google Scholar 

  19. Schmedemann, O., Baass, M., Schoepflin, D., Schüppstuhl, T.: Procedural synthetic training data generation for AI-based defect detection in industrial surface inspection. Procedia CIRP 107, 1101–1106 (2022)

    Article  Google Scholar 

  20. Zhang, Y., Shen, S., Xu, S.: Strip steel surface defect detection based on lightweight YOLOv5. Front. Neurorobotics 17, 1263739 (2023). https://doi.org/10.3389/fnbot.2023.1263739

    Article  Google Scholar 

Download references

Acknowledgements

Grant 2023-PRED-21291 funded by Universidad de Castilla-La Mancha and by “ESF Investing in your future”. Grant BES-2021-097834 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way of making Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de la Rosa, F.L., Moreno-Salvador, L., Gómez-Sirvent, J.L., Morales, R., Sánchez-Reolid, R., Fernández-Caballero, A. (2024). Improved Surface Defect Classification from a Simple Convolutional Neural Network by Image Preprocessing and Data Augmentation. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics