Skip to main content

Real-Time Emotion Detection System’s Impact on Pivotal Response Training Protocol

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

In recent years, there has been a growing emphasis on Autism Spectrum Disorder (ASD), marked by evolving classifications and increasing global prevalence. Early intervention is underscored as crucial for effective management of ASD, given that emotional dysregulation is a prominent characteristic, leading to challenges in regulating and expressing emotions in a typical manner. This study aims to propose the utilization of Empatica E4 (at the physiological level) and Face tracking (at the behavioral level) as a real-time emotion detection system, exploring its potential impact on interventions based on the Pivotal Response Treatment method (PRT) for children with autism. The goal is to enhance understanding of the child’s emotions, facilitate communication, strengthen emotional connections during interventions, and promote strategies for managing intense emotions.

Integrating a real-time emotion detection system into PRT interventions holds promise for significantly enhancing the therapeutic process. By providing valuable insights into the child’s emotional state, this approach offers a promising avenue to tailor treatments to individual needs and provide greater emotional support and social development for children with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. André, T.G., Montero, C.V., Félix, R.E.O., Medina, M.E.G.: Prevalencia del trastorno del espectro autista: una revisión de la literatura. Jóvenes en la ciencia, 7 (2020)

    Google Scholar 

  2. Boateng, E., Otoo, J., Abaye, D.: Basic tenets of classification algorithms k-nearest-neighbor, support vector machine, random forest and neural network: a review. J. Data Anal. Inform. Process. 8, 341–357 (2020)

    Google Scholar 

  3. Boudreau, A.M., Lucyshyn, J.M., Corkum, P., Meko, K., Smith, I.M.: Peer-mediated pivotal response treatment at school for children with autism spectrum disorder. Can. J. Sch. Psychol. 36(1), 34–50 (2021)

    Article  Google Scholar 

  4. Cai, R.Y., Richdale, A.L., Uljarević, M., Dissanayake, C., Samson, A.C.: Emotion regulation in autism spectrum disorder: where we are and where we need to go. Autism Res. 11(7), 962–978 (2018)

    Article  Google Scholar 

  5. Cosoli, G., Poli, A., Scalise, L., Spinsante, S.: Measurement of multimodal physiological signals for stimulation detection by wearable devices. Measurement 184, 109966 (2021)

    Article  Google Scholar 

  6. Drimalla, H., Baskow, I., Behnia, B., Roepke, S., Dziobek, I.: Imitation and recognition of facial emotions in autism: a computer vision approach. Mol. autism 12, 1–15 (2021)

    Article  Google Scholar 

  7. E4 connect. (s. f.). Recuperado 7 de marzo de 2024. https://e4.empatica.com/connect/privacy.php

  8. Flynn, M., et al.: Assessing the effectiveness of automated emotion recognition in adults and children for clinical investigation. Front. Hum. Neurosci. 14, 70 (2020)

    Article  Google Scholar 

  9. Górriz, et al.: Computational approaches to Explainable Artificial Intelligence: advances in theory, applications and trends. Inform. Fusion 100, 101945 (2023)

    Google Scholar 

  10. Grow, L.L., Kodak, T., Clements, A.: An evaluation of instructive feedback to teach play behavior to a child with autism spectrum disorder. Behav. Anal. Pract. 10, 313–317 (2017)

    Article  Google Scholar 

  11. Hazen, E.P., Stornelli, J.L., O’Rourke, J.A., Koesterer, K., McDougle, C.J.: Sensory symptoms in autism spectrum disorders. Harv. Rev. Psychiatry 22(2), 112–124 (2014)

    Article  Google Scholar 

  12. Herrera-Del Aguila, D.: Trastorno del espectro autista: la historia. Diagnóstico 60(3), 131–133 (2021)

    Article  Google Scholar 

  13. Kasari, C., Gulsrud, A., Paparella, T., Hellemann, G., Berry, K.: Randomized comparative efficacy study of parent-mediated interventions for toddlers with autism. J. Consult. Clin. Psychol. 83(3), 554–563 (2015)

    Article  Google Scholar 

  14. Keluskar, J., Reicher, D., Gorecki, A., Mazefsky, C., Crowell, J.A.: Understanding, assessing, and intervening with emotion dysregulation in autism spectrum disorder: a developmental perspective. Child Adolesc. Psychiatr. Clin. 30(2), 335–348 (2021)

    Article  Google Scholar 

  15. Koegel, R.L., Koegel, L.K., Ashbaugh, K., Bradshaw, J.: The Importance of early identification and intervention for children with or at risk for autism spectrum disorders. Int. J. Speech Lang. Pathol. 16(1), 50–56 (2014)

    Article  Google Scholar 

  16. Landowska, A., et al.: Automatic emotion recognition in children with autism: a systematic literature review. Sensors 22(4), 1649 (2022)

    Article  Google Scholar 

  17. Lei, J., Ventola, P.: Pivotal response treatment for autism spectrum disorder: current perspectives. Neuropsychiatr. Dis. Treat. 20, 1613–1626 (2017)

    Article  Google Scholar 

  18. Ojea Rúa, M.: El espectro autista: intervención psicoeducativa. Aljibe, Archidona (Málaga) (2004)

    Google Scholar 

  19. Ona, H.N., Larsen, K., Nordheim, L.V., Brurberg, K.G.: Effects of pivotal response treatment (PRT) for children with autism spectrum disorders (ASD): a systematic review. Rev. J. AutismDev. Disord. 7, 78–90 (2020)

    Article  Google Scholar 

  20. Pérez, M.D.L.L.A., Pérez, R.B.: Alternativas de tratamiento en los trastornos del espectro autista: una revisión bibliográfica entre 2000 y 2016. Revista de psicología clínica con niños y adolescentes 5(1), 22–31 (2018)

    Google Scholar 

  21. Pickles, A., et al.: Parent-mediated social communication therapy for young children with autism (PACT): long-term follow-up of a randomised controlled trial. Lancet 388(10059), 2501–2509 (2016)

    Article  Google Scholar 

  22. Qadeib Alban, A., et al.:. Detection of challenging behaviours of children with autism using wearable sensors during interactions with social robots. In: 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 852–859 (2021)

    Google Scholar 

  23. Regier, D.A., Kuhl, E.A., El Kupfer, D.J.: DSM-5: cambios en la clasificación y los criterios. Revista Oficial De La Asociación Mundial De Psiquiatría (Wpa) 12, 92–98 (2009)

    Google Scholar 

  24. Rivière, Á.: Autismo: Orientaciones para la intervención educativa. Trotta, Madrid (2001)

    Google Scholar 

  25. Saganowski, S., Komoszyńska, J., Behnke, M., et al.: Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables. Sci. Data 9, 158 (2022)

    Article  Google Scholar 

  26. Sandhu, M., et al.: Empowering Caregivers of Autism Spectrum Disorder through Sensor-Based Emotional Dysregulation Monitoring. (s. f.)

    Google Scholar 

  27. Schonewille, C.: Sensory processing in autism spectrum disorder (Doctoral dissertation) (2018)

    Google Scholar 

  28. Akansha, S., Surbhi, D.: AutisMitr: emotion recognition assistive tool for autistic children. Open Comput. Sci. 10(1), 259–269 (2020)

    Article  Google Scholar 

  29. Sosa-Piñeiro, K., Rodríguez-Padrón, Y., Romo-Morfa, A.: El Autismo. Evolución de su dimensión teórica/Autism. Theoretical considerations. Educación y sociedad 15, 15–25 (2017)

    Google Scholar 

  30. Stahmer, A.C., Schreibman, L., Cunningham, A.B.: Toward a technology of treatment individualization for young children with autism spectrum disorders. Brain Res. 1380, 229–239 (2011)

    Article  Google Scholar 

  31. Talaat, F.M.: Real-time facial emotion recognition system among children with autism based on deep learning and IoT. Neural Comput. Appl. 35, 12717–12728 (2023)

    Article  Google Scholar 

  32. Toprak, E., Bilgin Aktas, S.N., Coşkun, B., Uluer, P., Kose, H., Barkana, D.E.: Investigation of physiological features by age groups in children with autism. In: 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), pp. 287–292. L’Aquila, Italy (2023)

    Google Scholar 

  33. Uljarević, M., Billingham, W., Cooper, M.N., Condron, P., Hardan, A.Y.: Examining effectiveness and predictors of treatment response of pivotal response treatment in autism: an umbrella review and a meta-analysis. Front. Psych. 12, 766150 (2022)

    Article  Google Scholar 

  34. Varghese, D.: Comparative study on classic machine learning algorithms. Accessed 28 July 2021 (2018)

    Google Scholar 

  35. Verschuur, R., Didden, R., Lang, R., Sigafoos, J., Huskens, B.: Pivotal response treatment for children with autism spectrum disorders: a systematic review. Rev. J. Autism Dev. Disord. 1, 34–61 (2014)

    Article  Google Scholar 

  36. Widen, S.C., Russell, J.A.: Young children’s understanding of other’s emotions. Handb. emotions 3, 348–363 (2008)

    Google Scholar 

  37. Zúñiga, A.H., Balmaña, N., Salgado, M.: Los trastornos del espectro autista (TEA). Pediatría integral 21(2), 92–108 (2017)

    Google Scholar 

Download references

Acknowledgements

This project has received funding by grant PID2020-115220RB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”, and was funded in part by grants DTS19/00175 and PDC2022-133952-100 from the Spanish “Ministerio de Ciencia, Innovación y Universidades” and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 899287 (NeuraViPeR), as well as the “Premio Tecnologías Accesibles de Indra y Universia Fundación”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gema Benedicto , Félix de la Paz , Antonio Fernández-Caballero or Eduardo Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benedicto, G., la Paz, F.d., Fernández-Caballero, A., Fernandez, E. (2024). Real-Time Emotion Detection System’s Impact on Pivotal Response Training Protocol. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics