Abstract
Despite the rapid advances in AI, most organizations struggle to fully harness the potential that emerging technologies in the realm of Natural Language Processing (NLP) offer. This study deals with the particular challenge of using large language models (LLMs) to enhance the communication of organizational knowledge among employees and with external customers. Traditionally, companies rely on distributing knowledge via websites, internal documents or knowledge management systems, the use of which often proves tedious. In response, this work proposes an integration framework that helps organizations to connect the digital representations of their existing knowledge with LLMs. This integration enables intelligent retrieval and enhances semantic matching of questions and answers based on the knowledge base. Objectives for the framework are derived from insights gathered through interviews with organizations, emphasizing the practical relevance of the proposed solution, and demonstrate the utility of the framework with a prototypical implementation. This research not only represents a contribution to the ongoing research on the organizational applications of LLM-based digital technologies but also outlines the benefits and the limits of current LLM technologies for the enhancement of organizational knowledge management.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abioye, S.O., et al.: Artificial intelligence in the construction industry: a review of present status, opportunities and future challenges. J. Build. Eng. 44, 103299 (2021). https://doi.org/10.1016/j.jobe.2021.103299
Ahmed, G., Ragsdell, G., Olphert, W.: Knowledge sharing and information security: a paradox? (2014)
Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 107–136 (2001). https://doi.org/10.2307/3250961
Ali, O., Krsteska, K., Said, D., Momin, M.: Advanced technologies enabled human resources functions: benefits, challenges, and functionalities: a systematic review. Cogent Bus. Manag. 10(2), 2216430 (2023). https://doi.org/10.1080/23311975.2023.2216430
Barann, B., Hermann, A., Cordes, A.K., Chasin, F., Becker, J.: Supporting Digital Transformation in Small and Medium-sized Enterprises: A Procedure Model Involving Publicly Funded Support Units (2019). https://doi.org/10.24251/HICSS.2019.598
Basyal, G.P., Rimal, B., Zeng, D.: A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare (2020). https://doi.org/10.5121/csit.2020.100921
Bavarian, M., et al.: Efficient training of language models to fill in the middle. arXiv abs/2207.14255 (2022). https://doi.org/10.48550/arXiv.2207.14255
Berente, N., Bin, G., Recker, J., Santhanam, R.: Managing artificial intelligence. MIS Q. 45(3), 1433 (2021). https://doi.org/10.25300/MISQ/2021/16274
Chasin, F., Kowalkiewicz, M., Gollhardt, T.: How watkins steel went from traditional steel fabrication to digital service provision. MIS Q. Exec. (2022). https://doi.org/10.17705/2msqe.00066
Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012). https://doi.org/10.2307/41703503
Chowdhary, K.: Natural language processing. Found. Artif. Intell. 603–649 (2020). https://doi.org/10.1007/978-81-322-3972-7
DreamCode: Artificial intelligence (AI) impact areas in the business arena of 2023 (2023). https://www.dreamcodesoft.com/en/blog/artificial-intelligence-A-I-impact-areas-in-the-business-arena-of-2023
Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. 24(5), 1709–1734 (2022). https://doi.org/10.1007/s10796-021-10186-w
Freeman, L.A.: Information systems knowledge: foundations, definitions, and applications. Inf. Syst. Front. 3(2), 249–266 (2001). https://doi.org/10.1023/A:1011408710845
Grudin, J.: Enterprise knowledge management and emerging technologies. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS 2006), vol. 3, p. 57a (2006). https://doi.org/10.1109/HICSS.2006.156
Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. arXiv abs/2205.11916 (2022). https://doi.org/10.48550/arXiv.2205.11916
Kopitar, L., Stiglic, G.: Using heterogeneous sources of data and interpretability of prediction models to explain the characteristics of careless respondents in survey data. Sci. Rep. 13(1), 13417 (2023). https://doi.org/10.1038/s41598-023-40209-2
Korinek, A., Schindler, M., Stiglitz, J.: Technological progress, artificial intelligence, and inclusive growth. IMF Working Papers 2021(166), A001 (2021). https://doi.org/10.5089/9781513583280.001.A001
Narawish, C., Sharma, D., Rajest, S., Rajan, R.: Importance of cost efficiency in critical aspect of influences the decision-making process in banks. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turk. J. Physiother. Rehabil. 32, 47184–47212 (2022)
Nwankpa, J.K., Roumani, Y., Datta, P.: Process innovation in the digital age of business: the role of digital business intensity and knowledge management. J. Knowl. Manag. 26(5), 1320 (2022). https://doi.org/10.1108/JKM-04-2021-0277
O’Leary, D.E.: A multilingual knowledge management system: a case study of FAO and WAICENT. Decis. Support Syst. 45(3), 641–661 (2008). https://doi.org/10.1016/j.dss.2007.07.007
Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv abs/2203.02155 (2022). https://doi.org/10.48550/arXiv.2203.02155
Ozer, M., Zhang, G.: The roles of knowledge providers, knowledge recipients, and knowledge usage in bridging structural holes. J. Prod. Innov. Manag. 36(2), 224–240 (2019). https://doi.org/10.1111/jpim.12478
Pandya, K., Holia, M.S.: Automating customer service using langchain: building custom open-source GPT chatbot for organizations. arXiv abs/2310.05421 (2023). https://doi.org/10.48550/arXiv.2310.05421
Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302
Sokolova, M., Shah, M., Szpakowicz, S.: Comparative analysis of text data in successful face-to-face and electronic negotiations. Group Decis. Negot. 15(2), 128 (2006). https://doi.org/10.1007/s10726-006-9024-z
Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20(2), 100159 (2022). https://doi.org/10.1016/j.jnlest.2022.100159
Trivedi, H., Balasubramanian, N., Khot, T., Sabharwal, A.: Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv abs/2212.10509 (2022). https://doi.org/10.48550/arXiv.2212.10509
Yang, C.C., Wei, C.P., Li, K.W.: Cross-lingual thesaurus for multilingual knowledge management. Decis. Support Syst. 45(3), 596–605 (2008). https://doi.org/10.1016/j.dss.2007.07.005
Yao, J.Y., Ning, K.P., Liu, Z.H., Ning, M.N., Yuan, L.: LLM lies: hallucinations are not bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469 (2023). https://doi.org/10.48550/arXiv.2310.01469
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cappel, J., Chasin, F. (2024). Bridging Enterprise Knowledge Management and Natural Language Processing - Integration Framework and a Prototype. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-61175-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61174-2
Online ISBN: 978-3-031-61175-9
eBook Packages: Computer ScienceComputer Science (R0)