Skip to main content

Bridging Enterprise Knowledge Management and Natural Language Processing - Integration Framework and a Prototype

  • Conference paper
  • First Online:
Design Science Research for a Resilient Future (DESRIST 2024)

Abstract

Despite the rapid advances in AI, most organizations struggle to fully harness the potential that emerging technologies in the realm of Natural Language Processing (NLP) offer. This study deals with the particular challenge of using large language models (LLMs) to enhance the communication of organizational knowledge among employees and with external customers. Traditionally, companies rely on distributing knowledge via websites, internal documents or knowledge management systems, the use of which often proves tedious. In response, this work proposes an integration framework that helps organizations to connect the digital representations of their existing knowledge with LLMs. This integration enables intelligent retrieval and enhances semantic matching of questions and answers based on the knowledge base. Objectives for the framework are derived from insights gathered through interviews with organizations, emphasizing the practical relevance of the proposed solution, and demonstrate the utility of the framework with a prototypical implementation. This research not only represents a contribution to the ongoing research on the organizational applications of LLM-based digital technologies but also outlines the benefits and the limits of current LLM technologies for the enhancement of organizational knowledge management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tinyurl.com/5xrdw5kj.

References

  1. Abioye, S.O., et al.: Artificial intelligence in the construction industry: a review of present status, opportunities and future challenges. J. Build. Eng. 44, 103299 (2021). https://doi.org/10.1016/j.jobe.2021.103299

    Article  Google Scholar 

  2. Ahmed, G., Ragsdell, G., Olphert, W.: Knowledge sharing and information security: a paradox? (2014)

    Google Scholar 

  3. Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 107–136 (2001). https://doi.org/10.2307/3250961

  4. Ali, O., Krsteska, K., Said, D., Momin, M.: Advanced technologies enabled human resources functions: benefits, challenges, and functionalities: a systematic review. Cogent Bus. Manag. 10(2), 2216430 (2023). https://doi.org/10.1080/23311975.2023.2216430

    Article  Google Scholar 

  5. Barann, B., Hermann, A., Cordes, A.K., Chasin, F., Becker, J.: Supporting Digital Transformation in Small and Medium-sized Enterprises: A Procedure Model Involving Publicly Funded Support Units (2019). https://doi.org/10.24251/HICSS.2019.598

  6. Basyal, G.P., Rimal, B., Zeng, D.: A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare (2020). https://doi.org/10.5121/csit.2020.100921

  7. Bavarian, M., et al.: Efficient training of language models to fill in the middle. arXiv abs/2207.14255 (2022). https://doi.org/10.48550/arXiv.2207.14255

  8. Berente, N., Bin, G., Recker, J., Santhanam, R.: Managing artificial intelligence. MIS Q. 45(3), 1433 (2021). https://doi.org/10.25300/MISQ/2021/16274

  9. Chasin, F., Kowalkiewicz, M., Gollhardt, T.: How watkins steel went from traditional steel fabrication to digital service provision. MIS Q. Exec. (2022). https://doi.org/10.17705/2msqe.00066

  10. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012). https://doi.org/10.2307/41703503

    Article  Google Scholar 

  11. Chowdhary, K.: Natural language processing. Found. Artif. Intell. 603–649 (2020). https://doi.org/10.1007/978-81-322-3972-7

  12. DreamCode: Artificial intelligence (AI) impact areas in the business arena of 2023 (2023). https://www.dreamcodesoft.com/en/blog/artificial-intelligence-A-I-impact-areas-in-the-business-arena-of-2023

  13. Enholm, I.M., Papagiannidis, E., Mikalef, P., Krogstie, J.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. 24(5), 1709–1734 (2022). https://doi.org/10.1007/s10796-021-10186-w

    Article  Google Scholar 

  14. Freeman, L.A.: Information systems knowledge: foundations, definitions, and applications. Inf. Syst. Front. 3(2), 249–266 (2001). https://doi.org/10.1023/A:1011408710845

    Article  MathSciNet  Google Scholar 

  15. Grudin, J.: Enterprise knowledge management and emerging technologies. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS 2006), vol. 3, p. 57a (2006). https://doi.org/10.1109/HICSS.2006.156

  16. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. arXiv abs/2205.11916 (2022). https://doi.org/10.48550/arXiv.2205.11916

  17. Kopitar, L., Stiglic, G.: Using heterogeneous sources of data and interpretability of prediction models to explain the characteristics of careless respondents in survey data. Sci. Rep. 13(1), 13417 (2023). https://doi.org/10.1038/s41598-023-40209-2

    Article  Google Scholar 

  18. Korinek, A., Schindler, M., Stiglitz, J.: Technological progress, artificial intelligence, and inclusive growth. IMF Working Papers 2021(166), A001 (2021). https://doi.org/10.5089/9781513583280.001.A001

  19. Narawish, C., Sharma, D., Rajest, S., Rajan, R.: Importance of cost efficiency in critical aspect of influences the decision-making process in banks. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turk. J. Physiother. Rehabil. 32, 47184–47212 (2022)

    Google Scholar 

  20. Nwankpa, J.K., Roumani, Y., Datta, P.: Process innovation in the digital age of business: the role of digital business intensity and knowledge management. J. Knowl. Manag. 26(5), 1320 (2022). https://doi.org/10.1108/JKM-04-2021-0277

    Article  Google Scholar 

  21. O’Leary, D.E.: A multilingual knowledge management system: a case study of FAO and WAICENT. Decis. Support Syst. 45(3), 641–661 (2008). https://doi.org/10.1016/j.dss.2007.07.007

    Article  Google Scholar 

  22. Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv abs/2203.02155 (2022). https://doi.org/10.48550/arXiv.2203.02155

  23. Ozer, M., Zhang, G.: The roles of knowledge providers, knowledge recipients, and knowledge usage in bridging structural holes. J. Prod. Innov. Manag. 36(2), 224–240 (2019). https://doi.org/10.1111/jpim.12478

    Article  Google Scholar 

  24. Pandya, K., Holia, M.S.: Automating customer service using langchain: building custom open-source GPT chatbot for organizations. arXiv abs/2310.05421 (2023). https://doi.org/10.48550/arXiv.2310.05421

  25. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302

    Article  Google Scholar 

  26. Sokolova, M., Shah, M., Szpakowicz, S.: Comparative analysis of text data in successful face-to-face and electronic negotiations. Group Decis. Negot. 15(2), 128 (2006). https://doi.org/10.1007/s10726-006-9024-z

    Article  Google Scholar 

  27. Tian, L., Zhou, X., Wu, Y.P., Zhou, W.T., Zhang, J.H., Zhang, T.S.: Knowledge graph and knowledge reasoning: a systematic review. J. Electron. Sci. Technol. 20(2), 100159 (2022). https://doi.org/10.1016/j.jnlest.2022.100159

    Article  Google Scholar 

  28. Trivedi, H., Balasubramanian, N., Khot, T., Sabharwal, A.: Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv abs/2212.10509 (2022). https://doi.org/10.48550/arXiv.2212.10509

  29. Yang, C.C., Wei, C.P., Li, K.W.: Cross-lingual thesaurus for multilingual knowledge management. Decis. Support Syst. 45(3), 596–605 (2008). https://doi.org/10.1016/j.dss.2007.07.005

    Article  Google Scholar 

  30. Yao, J.Y., Ning, K.P., Liu, Z.H., Ning, M.N., Yuan, L.: LLM lies: hallucinations are not bugs, but features as adversarial examples. arXiv preprint arXiv:2310.01469 (2023). https://doi.org/10.48550/arXiv.2310.01469

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justus Cappel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappel, J., Chasin, F. (2024). Bridging Enterprise Knowledge Management and Natural Language Processing - Integration Framework and a Prototype. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61175-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61174-2

  • Online ISBN: 978-3-031-61175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics