Abstract
This paper introduces a novel conceptual model of observational crowdsourcing (OC), a participatory tool that engages the crowd to generate data by sharing their ideas, observations, or knowledge. Existing conceptual frameworks do not reflect all the actors in an OC project and their goals. In addition, they do not consider the dual role of the platform as being a technology provider and also dependent on users for success. We used the structure of design principles to conceptualize the observational crowdsourcing problem domain in terms of actors, contribution, platform, and outcome dimensions. Grounded in design science research, this conceptual model contributes a nuanced understanding of observational crowdsourcing, offering a valuable resource for researchers and practitioners. The study addresses the gap in seeing OC through the problem-solving lens of design science research by delineating the interconnected nature of actors, contributions, platforms, and outcomes. It provides a foundation for developing design principles in the evolving landscape of observational crowdsourcing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbato, D., Benocci, A., Guasconi, M., Manganelli, G.: Light and shade of citizen science for less charismatic invertebrate groups: quality assessment of iNaturalist nonmarine mollusc observations in central Italy. J. Molluscan Stud. 87(4), (2021). https://doi.org/10.1093/mollus/eyab033
Black, N., Coast, S.: Geodata collection in the 21st century. Bull. Soc. Cartograph. 41(1,2), 3–8 (2007)
Parsons, J., Tuunanen, T., Venable, J., Donnellan, B., Helfert, M., Kenneally, J. (eds.): DESRIST 2016. LNCS, vol. 9661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39294-3
Crowston, K., Mitchell, E., Østerlund, C.: Coordinating advanced crowd work: extending citizen science. Citizen Sci. 4(1), (2019). https://doi.org/10.5334/cstp.
Drechsler, A., Hevner, A.R.: Utilizing, producing, and contributing design knowledge in DSR projects. In: Chatterjee, S., Dutta, K., Sundarraj, R.P. (eds.) DESRIST 2018. LNCS, vol. 10844, pp. 82–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91800-6_6
Estellés-Arolas, E., González-Ladrón-De-Guevara, F.: Towards an integrated crowdsourcing definition. J. Inf. Sci. 38(2), 189–200 (2012). https://doi.org/10.1177/0165551512437638
Gregor, S., Chandra Kruse, L., Seidel, S.: Research perspectives: the anatomy of a design principle. J. Assoc. Inf. Syst. 21, 2 (2020)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–106 (2004)
Hosseini, M., Phalp, K., Taylor, J., Ali, R.: The four pillars of crowdsourcing: a reference model. In: IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (2014).https://doi.org/10.1109/rcis.2014.6861072
Howe, J.L.: The rise of crowdsourcing. Wired (2006). http://ci.nii.ac.jp/naid/10029969381
Gregor, S., Imran, A., Turner, T.: A ‘sweet spot’ change strategy for a least developed country: leveraging e-Government in Bangladesh. Eur. J. Inf. Syst. 23(6), 655–671 (2014). https://doi.org/10.1057/ejis.2013.14
Karachiwalla, R., Pinkow, F.: Understanding crowdsourcing projects: a review on the key design elements of a crowdsourcing initiative. Creat. Innov. Manag. 30(3), 563–584 (2021). https://doi.org/10.1111/caim.12454
Keating, M., Furberg, R.D.: A methodological framework for crowdsourcing in research. In: Proceedings of the 2013 Federal Committee on Statistical Methodology (FCSM) Research Conference (2013). https://nces.ed.gov/FCSM/pdf/H1_Keating_2013FCSM_AC.pdf
Lukyanenko, R., Parsons, J.: Beyond micro-tasks: research opportunities in observational crowdsourcing. J. Database Manag. 29(1), 1–22 (2018). https://doi.org/10.4018/JDM.2018010101
Lukyanenko, R., Parsons, J., Wiersma, Y.F.: Emerging problems of data quality in citizen science. Conserv. Biol. 30(3), 447–449 (2016). https://doi.org/10.1111/cobi.12706
Lyytinen, K., Newman, M.: Explaining information systems change: a punctuated socio-technical change model. Eur. J. Inf. Syst. 17(6), 589–613 (2008). https://doi.org/10.1057/ejis.2008.50
Lenart-Gansiniec, R., Czakon, W., Sułkowski, Ł, Poček, J.: Understanding crowdsourcing in science. RMS (2023). https://doi.org/10.1007/s11846-022-00602-z
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62(10), 1006–1012 (2009). https://doi.org/10.1016/j.jclinepi.2009.06.005
Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy development and its application in information systems. Eur. J. Inf. Syst. 22(3), 336–359 (2013). https://doi.org/10.1057/ejis.2012.26
Purao, S., Chandra Kruse, L., Maedche, A.: The origins of design principles: where do... they all come from? in designing for digital transformation. In: Hofmann, S., Müller, O., Rossi, M., (eds.) Co-creating services with citizens and industry, pp. 183–194. Springer International Publishing (2020)
Paul, J., et al.: Citizen science for hydrological risk reduction and resilience building. WIREs Water 5(1), (2017). https://doi.org/10.1002/wat2.1262
Resources (n.d.). https://www.gbif.org/resource/search?contentType=literature&gbifDatasetKey=50c9509d-22c7-4a22-a47d-8c48425ef4a7&peerReview=true. Accessed 17 Jan 2024
Robinson, K.L., Luo, J.Y., Sponaugle, S., Guigand, C.M., Cowen, R.K.: A tale of two crowds: public engagement in Plankton classification. Front. Mar. Sci. 4, 82 (2017). https://doi.org/10.3389/fmars.2017.00082
Schoormann, T., Möller, F., Chandra Kruse, L.: Uncovering strategies of design principle development. In: Proceedings of the 17th International Conference on Design Science Research in Information Systems and Technology (DESRIST), Research-in-Progress Paper, St. Petersburg (2022)
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., Legendre, F.: Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7(1), (2017). https://doi.org/10.1038/s41598-017-09084-6
Tchernavskij, P., Bødker, S.: Entangled artifacts: the meeting between a volunteer-run citizen science project and a biodiversity data platform. In: NordiCHI 2022, Aarhus, Denmark, 8–12 October 2022 (2022).https://doi.org/10.1145/3546155.3546682
Van Aken, J.E.: Management research as a design science: articulating the research products of mode 2 knowledge production in management. Br. J. Manag. 16(1), 19–36 (2005). https://doi.org/10.1111/j.1467-8551.2005.00437.x
Vom Brocke, J., Hevner, A.R., Maedche, A.: Introduction to design science research. In: Progress in IS, pp. 1–13 (2020). https://doi.org/10.1007/978-3-030-46781-4_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nabavian, S., Parsons, J. (2024). A Design-Principle-Friendly Conceptual Model of Observational Crowdsourcing. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-61175-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61174-2
Online ISBN: 978-3-031-61175-9
eBook Packages: Computer ScienceComputer Science (R0)