Skip to main content

Detection of Branded Posts in User-Generated Content

  • Conference paper
  • First Online:
Social Computing and Social Media (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14704))

Included in the following conference series:

  • 519 Accesses

Abstract

User-generated content (UGC) is a fundamental source of information for the study of consumer behavior, product development, and to assess the quality of service. The expansion of branded content, published and mixed with “ordinary” UGC on the same online platforms, blurs the notions of which content should be considered for these studies. This contribution draws on the notion of “authenticity” to offer a taxonomy distinguishing “branded” from “organic” content and presents a computational method to detect branded content in UGC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In practice, the step of spam removal is unfrequently performed (and if so, not documented in detail) in marketing research papers on online consumer sentiment.

  2. 2.

    The source code of all steps of the method is available under an Creative Commons Attribution 4.0 International Public License at https://github.com/seinecle/umigon-family.

  3. 3.

    https://github.com/seinecle/umigon-static-files/blob/main/src/main/resources/net/clementlevallois/umigon/lexicons/en/9_commercial%20tone.txt.

  4. 4.

    https://github.com/seinecle/umigon-lexicons/tree/main/src/main/java/net/clementlevallois/umigon/heuristics/booleanconditions.

  5. 5.

    https://github.com/vladkens/twscrape. The search on MongoDB returned 218 tweets and the search on HP printer returned 206 results, despite the parameter set.

  6. 6.

    Single tests can be performed on the homepage of https://nocodefunctions.com. Text files can be analyzed on the same platform, returning explanations for each of the results in a spreadsheet format. An API access is also available.

  7. 7.

    See also the public benchmark: https://github.com/seinecle/umibench.

References

  1. Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337(6092), 337–341 (2012). https://doi.org/10.1126/science.1215842

    Article  MathSciNet  Google Scholar 

  2. Asmussen, B., Wider, S., Williams, R., Stevenson, N., Whitehead, E.: Defining Branded Content for the Digital Age: The Industry Experts’ Views on Branded Content as a New Marketing Communications Concept (A Collaborative Research Project Commissioned by the Branded Content Marketing Association (BCMA), p. 42). Branded Content Marketing Association. https://research.cbs.dk/en/publications/defining-branded-content-for-the-digital-age-the-industry-experts

  3. Berger, J., Humphreys, A., Ludwig, S., Moe, W.W., Netzer, O., Schweidel, D.A.: Uniting the tribes: using text for marketing insight. J. Mark. 84(1), 1–25 (2020). https://doi.org/10.1177/0022242919873106

    Article  Google Scholar 

  4. Calheiros, A.C., Moro, S., Rita, P.: Sentiment classification of consumer-generated online reviews using topic modeling. J. Hosp. Market. Manag. 26(7), 675–693 (2017). https://doi.org/10.1080/19368623.2017.1310075

    Article  Google Scholar 

  5. Decker, R., Trusov, M.: Estimating aggregate consumer preferences from online product reviews. Int. J. Res. Mark. 27(4), 293–307 (2010). https://doi.org/10.1016/j.ijresmar.2010.09.001

    Article  Google Scholar 

  6. Haddara, M., Hsieh, J., Fagerstrøm, A., Eriksson, N., Sigurðsson, V.: Exploring customer online reviews for new product development: the case of identifying reinforcers in the cosmetic industry. Manag. Decis. Econ. 41(2), 250–273 (2020). https://doi.org/10.1002/mde.3078

    Article  Google Scholar 

  7. Hajli, N., Saeed, U., Tajvidi, M., Shirazi, F.: Social bots and the spread of disinformation in social media: the challenges of artificial intelligence. Br. J. Manag. 33(3), 1238–1253 (2022). https://doi.org/10.1111/1467-8551.12554

    Article  Google Scholar 

  8. Hardy, J., Karagiorgou, I., Keddo, N., Moise, R., Sujon, Z., Yesiloglu, S.: The UK Branded Content Industry: Report and Survey (p. 97). Branded Content Research Hub (2023)

    Google Scholar 

  9. Hartmann, J., Huppertz, J., Schamp, C., Heitmann, M.: Comparing automated text classification methods. Int. J. Res. Mark. 36(1), 20–38 (2019). https://doi.org/10.1016/j.ijresmar.2018.09.009

    Article  Google Scholar 

  10. Humphreys, A., Wang, R.J.-H.: Automated text analysis for consumer research. J. Consum. Res. 44(6), 1274–1306 (2018). https://doi.org/10.1093/jcr/ucx104

    Article  Google Scholar 

  11. Jindal, N., Liu, B.: Analyzing and detecting review spam. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 547–552 (2007). https://doi.org/10.1109/ICDM.2007.68

  12. Kaddoura, S., Chandrasekaran, G., Elena Popescu, D., Duraisamy, J.H.: A systematic literature review on spam content detection and classification. PeerJ Comput. Sci. 8, e830 (2022). https://doi.org/10.7717/peerj-cs.830

    Article  Google Scholar 

  13. Kannan, P.K., Li, H.: Digital marketing: a framework, review and research agenda. Int. J. Res. Mark. 34(1), 22–45 (2017). https://doi.org/10.1016/j.ijresmar.2016.11.006

    Article  Google Scholar 

  14. Lappas, T., Sabnis, G., Valkanas, G.: The impact of fake reviews on online visibility: a vulnerability assessment of the hotel industry. Inf. Syst. Res. 27(4), 940–961 (2016). https://doi.org/10.1287/isre.2016.0674

    Article  Google Scholar 

  15. Levallois, C.: Umigon: sentiment analysis for tweets based on terms lists and heuristics. Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pp. 414–417 (2013). https://aclanthology.org/S13-2068

  16. Levallois, C.: Reintroducing qualitative insights in big data: the case of “sentiment” in textual analysis. Under Rev. (2023)

    Google Scholar 

  17. Levallois, C.: Umigon-lexicon: a contribution to inherently interpretable sentiment analysis. Lang. Resources and Evalution (forthcoming) (n.d.)

    Google Scholar 

  18. Lobel, I., Sadler, E., Varshney, L.R.: Customer referral incentives and social media. Manage. Sci. 63(10), 3514–3529 (2017). https://doi.org/10.1287/mnsc.2016.2476

    Article  Google Scholar 

  19. Luo, J., Huang, S., Wang, R.: A fine-grained sentiment analysis of online guest reviews of economy hotels in China. J. Hospitality Market. Manage. 30(1), 71–95 (2021).https://doi.org/10.1080/19368623.2020.1772163

  20. Mayzlin, D., Dover, Y., Chevalier, J.: Promotional reviews: an empirical investigation of online review manipulation. Am. Econ. Rev. 104(8), 2421–2455 (2014). https://doi.org/10.1257/aer.104.8.2421

    Article  Google Scholar 

  21. Nunes, J.C., Ordanini, A., Giambastiani, G.: The concept of authenticity: what it means to consumers. J. Mark. 85(4), 1–20 (2021). https://doi.org/10.1177/0022242921997081

    Article  Google Scholar 

  22. Paul, H., Nikolaev, A.: Fake review detection on online E-commerce platforms: a systematic literature review. Data Min. Knowl. Disc. 35(5), 1830–1881 (2021). https://doi.org/10.1007/s10618-021-00772-6

    Article  MathSciNet  Google Scholar 

  23. Pizam, A., Shapoval, V., Ellis, T.: Customer satisfaction and its measurement in hospitality enterprises: a revisit and update. Int. J. Contemp. Hosp. Manag. 28(1), 2–35 (2016). https://doi.org/10.1108/IJCHM-04-2015-0167

    Article  Google Scholar 

  24. Rambocas, M., Pacheco, B.G.: Online sentiment analysis in marketing research: a review. J. Res. Interact. Mark. 12(2), 146–163 (2018). https://doi.org/10.1108/JRIM-05-2017-0030

    Article  Google Scholar 

  25. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 5 (2019). https://doi.org/10.1038/s42256-019-0048-x

  26. Schulze, C., Schöler, L., Skiera, B.: Not all fun and games: viral marketing for utilitarian products. J. Mark. 78(1), 1–19 (2014). https://doi.org/10.1509/jm.11.0528

    Article  Google Scholar 

  27. Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms. ACM SIGKDD Explor. Newsl 13(2), 50–64 (2012). https://doi.org/10.1145/2207243.2207252

    Article  Google Scholar 

  28. Subramani, M.R., Rajagopalan, B.: Knowledge-sharing and influence in online social networks via viral marketing. Commun. ACM 46(12), 300–307 (2003). https://doi.org/10.1145/953460.953514

    Article  Google Scholar 

  29. Timoshenko, A., Hauser, J.R.: Identifying customer needs from user-generated content. Mark. Sci. 38(1), 1–20 (2019). https://doi.org/10.1287/mksc.2018.1123

    Article  Google Scholar 

  30. van Dieijen, M., Borah, A., Tellis, G.J., Franses, P.H.: Big data analysis of volatility spillovers of brands across social media and stock markets. Ind. Mark. Manage. 88, 465–484 (2020). https://doi.org/10.1016/j.indmarman.2018.12.006

    Article  Google Scholar 

  31. Wu, Y., Ngai, E.W.T., Wu, P., Wu, C.: Fake online reviews: literature review, synthesis, and directions for future research. Decis. Support Syst. 132, 113280 (2020). https://doi.org/10.1016/j.dss.2020.113280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Levallois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levallois, C. (2024). Detection of Branded Posts in User-Generated Content. In: Coman, A., Vasilache, S. (eds) Social Computing and Social Media. HCII 2024. Lecture Notes in Computer Science, vol 14704. Springer, Cham. https://doi.org/10.1007/978-3-031-61305-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61305-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61304-3

  • Online ISBN: 978-3-031-61305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics