Abstract
User-generated content (UGC) is a fundamental source of information for the study of consumer behavior, product development, and to assess the quality of service. The expansion of branded content, published and mixed with “ordinary” UGC on the same online platforms, blurs the notions of which content should be considered for these studies. This contribution draws on the notion of “authenticity” to offer a taxonomy distinguishing “branded” from “organic” content and presents a computational method to detect branded content in UGC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In practice, the step of spam removal is unfrequently performed (and if so, not documented in detail) in marketing research papers on online consumer sentiment.
- 2.
The source code of all steps of the method is available under an Creative Commons Attribution 4.0 International Public License at https://github.com/seinecle/umigon-family.
- 3.
- 4.
- 5.
https://github.com/vladkens/twscrape. The search on MongoDB returned 218 tweets and the search on HP printer returned 206 results, despite the parameter set.
- 6.
Single tests can be performed on the homepage of https://nocodefunctions.com. Text files can be analyzed on the same platform, returning explanations for each of the results in a spreadsheet format. An API access is also available.
- 7.
See also the public benchmark: https://github.com/seinecle/umibench.
References
Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science 337(6092), 337–341 (2012). https://doi.org/10.1126/science.1215842
Asmussen, B., Wider, S., Williams, R., Stevenson, N., Whitehead, E.: Defining Branded Content for the Digital Age: The Industry Experts’ Views on Branded Content as a New Marketing Communications Concept (A Collaborative Research Project Commissioned by the Branded Content Marketing Association (BCMA), p. 42). Branded Content Marketing Association. https://research.cbs.dk/en/publications/defining-branded-content-for-the-digital-age-the-industry-experts
Berger, J., Humphreys, A., Ludwig, S., Moe, W.W., Netzer, O., Schweidel, D.A.: Uniting the tribes: using text for marketing insight. J. Mark. 84(1), 1–25 (2020). https://doi.org/10.1177/0022242919873106
Calheiros, A.C., Moro, S., Rita, P.: Sentiment classification of consumer-generated online reviews using topic modeling. J. Hosp. Market. Manag. 26(7), 675–693 (2017). https://doi.org/10.1080/19368623.2017.1310075
Decker, R., Trusov, M.: Estimating aggregate consumer preferences from online product reviews. Int. J. Res. Mark. 27(4), 293–307 (2010). https://doi.org/10.1016/j.ijresmar.2010.09.001
Haddara, M., Hsieh, J., Fagerstrøm, A., Eriksson, N., Sigurðsson, V.: Exploring customer online reviews for new product development: the case of identifying reinforcers in the cosmetic industry. Manag. Decis. Econ. 41(2), 250–273 (2020). https://doi.org/10.1002/mde.3078
Hajli, N., Saeed, U., Tajvidi, M., Shirazi, F.: Social bots and the spread of disinformation in social media: the challenges of artificial intelligence. Br. J. Manag. 33(3), 1238–1253 (2022). https://doi.org/10.1111/1467-8551.12554
Hardy, J., Karagiorgou, I., Keddo, N., Moise, R., Sujon, Z., Yesiloglu, S.: The UK Branded Content Industry: Report and Survey (p. 97). Branded Content Research Hub (2023)
Hartmann, J., Huppertz, J., Schamp, C., Heitmann, M.: Comparing automated text classification methods. Int. J. Res. Mark. 36(1), 20–38 (2019). https://doi.org/10.1016/j.ijresmar.2018.09.009
Humphreys, A., Wang, R.J.-H.: Automated text analysis for consumer research. J. Consum. Res. 44(6), 1274–1306 (2018). https://doi.org/10.1093/jcr/ucx104
Jindal, N., Liu, B.: Analyzing and detecting review spam. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), pp. 547–552 (2007). https://doi.org/10.1109/ICDM.2007.68
Kaddoura, S., Chandrasekaran, G., Elena Popescu, D., Duraisamy, J.H.: A systematic literature review on spam content detection and classification. PeerJ Comput. Sci. 8, e830 (2022). https://doi.org/10.7717/peerj-cs.830
Kannan, P.K., Li, H.: Digital marketing: a framework, review and research agenda. Int. J. Res. Mark. 34(1), 22–45 (2017). https://doi.org/10.1016/j.ijresmar.2016.11.006
Lappas, T., Sabnis, G., Valkanas, G.: The impact of fake reviews on online visibility: a vulnerability assessment of the hotel industry. Inf. Syst. Res. 27(4), 940–961 (2016). https://doi.org/10.1287/isre.2016.0674
Levallois, C.: Umigon: sentiment analysis for tweets based on terms lists and heuristics. Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pp. 414–417 (2013). https://aclanthology.org/S13-2068
Levallois, C.: Reintroducing qualitative insights in big data: the case of “sentiment” in textual analysis. Under Rev. (2023)
Levallois, C.: Umigon-lexicon: a contribution to inherently interpretable sentiment analysis. Lang. Resources and Evalution (forthcoming) (n.d.)
Lobel, I., Sadler, E., Varshney, L.R.: Customer referral incentives and social media. Manage. Sci. 63(10), 3514–3529 (2017). https://doi.org/10.1287/mnsc.2016.2476
Luo, J., Huang, S., Wang, R.: A fine-grained sentiment analysis of online guest reviews of economy hotels in China. J. Hospitality Market. Manage. 30(1), 71–95 (2021).https://doi.org/10.1080/19368623.2020.1772163
Mayzlin, D., Dover, Y., Chevalier, J.: Promotional reviews: an empirical investigation of online review manipulation. Am. Econ. Rev. 104(8), 2421–2455 (2014). https://doi.org/10.1257/aer.104.8.2421
Nunes, J.C., Ordanini, A., Giambastiani, G.: The concept of authenticity: what it means to consumers. J. Mark. 85(4), 1–20 (2021). https://doi.org/10.1177/0022242921997081
Paul, H., Nikolaev, A.: Fake review detection on online E-commerce platforms: a systematic literature review. Data Min. Knowl. Disc. 35(5), 1830–1881 (2021). https://doi.org/10.1007/s10618-021-00772-6
Pizam, A., Shapoval, V., Ellis, T.: Customer satisfaction and its measurement in hospitality enterprises: a revisit and update. Int. J. Contemp. Hosp. Manag. 28(1), 2–35 (2016). https://doi.org/10.1108/IJCHM-04-2015-0167
Rambocas, M., Pacheco, B.G.: Online sentiment analysis in marketing research: a review. J. Res. Interact. Mark. 12(2), 146–163 (2018). https://doi.org/10.1108/JRIM-05-2017-0030
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 5 (2019). https://doi.org/10.1038/s42256-019-0048-x
Schulze, C., Schöler, L., Skiera, B.: Not all fun and games: viral marketing for utilitarian products. J. Mark. 78(1), 1–19 (2014). https://doi.org/10.1509/jm.11.0528
Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms. ACM SIGKDD Explor. Newsl 13(2), 50–64 (2012). https://doi.org/10.1145/2207243.2207252
Subramani, M.R., Rajagopalan, B.: Knowledge-sharing and influence in online social networks via viral marketing. Commun. ACM 46(12), 300–307 (2003). https://doi.org/10.1145/953460.953514
Timoshenko, A., Hauser, J.R.: Identifying customer needs from user-generated content. Mark. Sci. 38(1), 1–20 (2019). https://doi.org/10.1287/mksc.2018.1123
van Dieijen, M., Borah, A., Tellis, G.J., Franses, P.H.: Big data analysis of volatility spillovers of brands across social media and stock markets. Ind. Mark. Manage. 88, 465–484 (2020). https://doi.org/10.1016/j.indmarman.2018.12.006
Wu, Y., Ngai, E.W.T., Wu, P., Wu, C.: Fake online reviews: literature review, synthesis, and directions for future research. Decis. Support Syst. 132, 113280 (2020). https://doi.org/10.1016/j.dss.2020.113280
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Levallois, C. (2024). Detection of Branded Posts in User-Generated Content. In: Coman, A., Vasilache, S. (eds) Social Computing and Social Media. HCII 2024. Lecture Notes in Computer Science, vol 14704. Springer, Cham. https://doi.org/10.1007/978-3-031-61305-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-61305-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61304-3
Online ISBN: 978-3-031-61305-0
eBook Packages: Computer ScienceComputer Science (R0)