Skip to main content

Local vs. Global Risk Perception’s Effect in Dampening Infectious Disease Outbreaks – An Agent-Based Modeling Study

  • Conference paper
  • First Online:
Social Computing and Social Media (HCII 2024)

Abstract

This work explores two key dimensions of the dissemination of information on disease prevalence during an outbreak. First, we point out the necessity of prevalence data to be collected (and communicated) in different scopes, ranging from direct contacts to the whole population. Second, we emphasize the need to minimize the time between the beginning of contagiousness and case reporting, striving for near real-time reporting. To demonstrate the significance of these two dimensions, we introduce an agent-based toy model with an SEIR scheme on a variety of network topologies (random, regular, small-world, and scale-free networks). We compare four different disease mitigation strategies: A base strategy, which allows uncontrolled spread, a global strategy, where susceptible agents reduce their infection probability according to the system-wide prevalence and two local strategies, where susceptible agents reduce their infection probability according to the prevalence among either their first-order or their first-and-second-order neighbors. Across all four network types, we find that the local strategies better reduce both the outbreak’s peak height and total size, with the first-order local strategy proving most effective. However, when a lag between becoming contagious and reporting one’s disease state is introduced, the prevalence information of one’s first order neighbors becomes less useful. In this scenario, the first-and-second-order local strategy performs as good as or better than the first-order local strategy in terms of reducing outbreak size, in all networks except the random network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Islam, M.S., et al.: COVID-19-related infodemic and its impact on public health: a global social media analysis. Am. J. Trop. Med. Hyg. 103(4), 1621–1629 (2020). https://doi.org/10.4269/ajtmh.20-0812

    Article  Google Scholar 

  2. Zarocostas, J.: How to fight an infodemic. Lancet 395(10225), 676 (2020). https://doi.org/10.1016/S0140-6736(20)30461-X. ISSN: 0140-6736

    Article  Google Scholar 

  3. Pian, W., Chi, J., Ma, F.: The causes, impacts and countermeasures of COVID-19 “Infodemic’’: a systematic review using narrative synthesis. Inf. Process. Manag. 58(6), 102713 (2021). https://doi.org/10.1016/j.ipm.2021.102713. ISSN: 0306-4573

    Article  Google Scholar 

  4. Rosenstock, I.M.: Historical origins of the health belief model. Health Educ. Monogr. 2(4), 328–335 (1974). https://doi.org/10.1177/109019817400200403. ISSN: 0073-1455

    Article  Google Scholar 

  5. Chen, F.H.: Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases. Math. Biosci. 217(2), 125–133 (2009). https://doi.org/10.1016/j.mbs.2008.11.005. ISSN: 0025-5564

    Article  MathSciNet  Google Scholar 

  6. Sarkar, J.: Do disease prevalence and severity drive COVID-19 vaccine demand? Econ. Anal. Policy 75, 310–319 (2022). https://doi.org/10.1016/j.eap.2022.05.014. ISSN: 0313-5926

    Article  Google Scholar 

  7. Litwin, H., Levinsky, M.: Network-exposure severity and self-protective behaviors: the case of COVID-19. Innov. Aging 5(2) (2021). https://doi.org/10.1093/geroni/igab015. ISSN: 2399-5300

  8. Li, S., Feng, B., Liao, W., Pan, W.: Internet use, risk awareness, and demographic characteristics associated with engagement in preventive behaviors and testing: cross-sectional survey on COVID-19 in the United States. J. Med. Internet Res. 22(6), e19782 (2020). https://doi.org/10.2196/19782. ISSN: 1438-8871

    Article  Google Scholar 

  9. Corona-Warn-App Open Source Project. Open-Source Project Corona-Warn-App — coronawarn.app (2020). https://www.coronawarn.app/en/. Accessed 12 Jan 2024

  10. Menni, C., et al.: Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26(7), 1037–1040 (2020). https://doi.org/10.1038/s41591-020-0916-2. ISSN: 1546-170X

    Article  Google Scholar 

  11. Menni, C., et al.: COVID-19 vaccine waning and effectiveness and side-effects of boosters: a prospective community study from the ZOE COVID Study. Lancet Infect. Dis. 22(7), 1002–1010 (2022). https://doi.org/10.1016/S1473-3099(22)00146-3. ISSN: 1473-3099

    Article  Google Scholar 

  12. Neuhann, F., et al.: Entwicklung einer Software zur Unterstützung der Prozesse im Gesundheitsamt der Stadt Köln in der SARS-CoV-2-Pandemie, Digitales Kontaktmanagement (DiKoMa). Epidemiologisches Bull. 2020(23), 3–11 (2020). https://doi.org/10.25646/6923

  13. Grüne, B., et al.: Symptom diaries as a digital tool to detect SARSCoV-2 infections and differentiate between prevalent variants. Front. Public Health 10 (2022). https://doi.org/10.3389/fpubh.2022.1030939. ISSN: 2296-2565

  14. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 115(772), 700–721 (1927)

    Google Scholar 

  15. Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press, Cambridge (1996). ISBN: 978-0262050531

    Book  Google Scholar 

  16. Epstein, J.M.: Agent-based computational models and generative social science. Complexity 4(5), 41–60 (1999). https://doi.org/10.1002/(sici)1099-0526(199905/06)4:5<41::aid-cplx9>3.0.co;2-f. ISSN: 1099-0526

  17. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. Roy. Soc. Interface 2(4), 295–307 (2005). https://doi.org/10.1098/rsif.2005.0051. ISSN: 1742-5662

    Article  Google Scholar 

  18. Danon, L., et al.: Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011, 1–28 (2011). https://doi.org/10.1155/2011/284909. ISSN: 1687-7098

  19. Menczer, F., Fortunato, S., Davis, C.A.: A First Course in Network Science. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108653947. ISBN: 978-1-108-65394-7

  20. Barabasi, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  21. Zhao, S., Kuang, Y., Wu, C.-H., Bi, K., Ben-Arieh, D.: Risk perception and human behaviors in epidemics. IISE Trans. Healthc. Syst. Eng. 8(4), 315–328 (2018). https://doi.org/10.1080/24725579.2018.1464085. ISSN: 2472-5587

    Article  Google Scholar 

  22. Herrera-Diestra, J.L., Meyers, L.A.: Local risk perception enhances epidemic control. PLoS ONE 14(12), e0225576 (2019). https://doi.org/10.1371/journal.pone.0225576. ISSN: 1932-6203

    Article  Google Scholar 

  23. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  Google Scholar 

  24. Rehmann, J., Paltra, S.: EpiNetSim. Version v0.2 (2024). https://doi.org/10.5281/zenodo.10607229

  25. Vahdati, A.R.: Agents.jl: agent-based modeling framework in Julia. J. Open Source Softw. 4(42), 1611 (2019). https://doi.org/10.21105/joss.01611

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘smallworld’ networks’’. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918. ISSN: 1476-4687

    Article  Google Scholar 

  27. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509. https://www.science.org/doi/pdf/10.1126/science.286.5439.509

Download references

Acknowledgments

The work on the paper was in part funded by the Ministry of research and education (BMBF) Germany (grants number 031L0300D, 031L0302A) and TU Berlin. We especially want to thank Kai Nagel, for all the informative discussions that helped shape this paper. We also want to thank the organizers of the 2023 Infodemics Pandemics Summer School (IPSS) in Lübeck, for mentoring us in the theoretical and practical underpinnings for this paper. And a special thank you to IPSS participants Ye Eun Bae, Katharina Ledebur, and Maja Subelj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Paltra .

Editor information

Editors and Affiliations

Ethics declarations

Code Availability

All code necessary to reproduce the results of this paper is publicly available on GitHub [24].

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paltra, S., Rehmann, J. (2024). Local vs. Global Risk Perception’s Effect in Dampening Infectious Disease Outbreaks – An Agent-Based Modeling Study. In: Coman, A., Vasilache, S. (eds) Social Computing and Social Media. HCII 2024. Lecture Notes in Computer Science, vol 14705. Springer, Cham. https://doi.org/10.1007/978-3-031-61312-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61312-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61311-1

  • Online ISBN: 978-3-031-61312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics