Skip to main content

Insights from User Perceptions Towards the Design of a Proactive Intelligent TV Assistant

  • Conference paper
  • First Online:
Design, User Experience, and Usability (HCII 2024)

Abstract

Recognising the potential to enhance the television (TV) experience, the integration of proactive behaviours in an intelligent TV assistant is thought to reduce the user’s interaction effort and promote a more natural, friendly and empathetic use. However, existing research lacks a comprehensive understanding of the desirable dynamic and features of proactive behaviours in the TV context and their effects on perceived empathy and overall user experience (UX). This paper discusses the appropriateness and usefulness of proactive behaviours in an intelligent TV assistant prototype, seeking insights into their effects on perceived empathy and UX. To operationalise the study, the Wizard-of-OZ (WoZ) method was used to analyse users’ perceptions of the design of the proactive scenarios that compose the prototype. The results showed that the prototype provided a good UX and was perceived as being empathetic. However, although all proactive scenarios were seen as useful some issues related to their suitability to the user’s context and preferences were identified. The results of this study provide significant contributions to the TV domain, highlighting users’ propensity to adopt proactive TV assistants and emphasising the importance of personalisation for better UX and perceived empathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Notes

  1. 1.

    #P.7 – represents participant #7.

References

  1. Ammari, T., Kaye, J., Tsai, J.Y., Bentley, F.: Music, search, and IoT: How people (really) use voice assistants. ACM Trans. Comput.-Hum. Interact. 26(3), 28 (2019)

    Google Scholar 

  2. Reicherts, L, Zargham, N., Bonfert, M., Rogers, Y., Malaka, R.: May I Interrupt? Diverging opinions on proactive smart speakers. In Proceedings of the 3rd Conference on Conversational User Interfaces (CUI ‘21), pp. 10 ACM, New York (2021)

    Google Scholar 

  3. McLean, G., Osei-Frimpong, K.: Hey Alexa ... examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 99, 28–37 (2019)

    Google Scholar 

  4. Fernandes, S., Abreu, J., Almeida, P., Santos, R.: A review of voice user interfaces for interactive TV. Commun. Comput. Infor. Sci. 1004, 115–128 (2019)

    Google Scholar 

  5. Statista. Anzahl der Nutzer Virtueller Digitaler ASsistenten Weltweit in den Jahren von 2015 Bis 2021. https://de.statista.com/statistik/daten/studie/620321/umfrage/nutzungv%on-virtuellen-digitalen-assistenten-weltweit/. Accessed 27 Dec 2023

  6. Zargham, N., et al.: Understanding circumstances for desirable proactive behaviour of voice assistants: the proactivity dilemma. In: Proceedings of the 4th Conference on Conversational User Interfaces (CUI’22), Article 3, pp. 1–14. ACM, New York (2022)

    Google Scholar 

  7. Kraus, M., Wagner, N., Callejas, Z., Minker, W.: The role of trust in proactive conversational assistants. IEEE Access 9, 112821–112836 (2021)

    Article  Google Scholar 

  8. Miksik, O., et al.: Building Proactive Voice Assistants: When and How (not) to Interact (2020). arXiv:2005.01322

  9. Marques, T., Abreu, J., Santos, R.: Proactivity in the TV context: understanding the relevance and characteristics of proactive behaviours in voice assistants. In: Proceedings of the 2023 ACM International Conference on Interactive Media Experiences, pp. 314–319. ACM, New York (2023)

    Google Scholar 

  10. Schweitzer, N., Gollnhofer, J. F., Bellis, E.: Exploring the potential of proactive AI-enabled technologies. In: Proceedings of the Conference on AMA Summer Educators, IN18-IN19 (2018)

    Google Scholar 

  11. Silva, A.B., et al.: Intelligent personal assistants: a systematic literature review. Expert Syst. Appl. 147, 113193 (2020)

    Google Scholar 

  12. Kraus, M., et al.: “Was that successful?” On integrating proactive meta-dialogue in a DIY-Assistant using multimodal cues. In: Proceedings of the 2020 International Conference on Multimodal Interaction (ICMI ‘20), pp. 585–594. ACM, New York, NY (2020)

    Google Scholar 

  13. Campbell, I.C.: Amazon’s Alexa can now act on its own hunches to turn off lights and more. https://www.theverge.com/2021/1/25/22249044/amazon-alexa-update-proactive-hunches-guard-plus-subscription. Accessed 29 Dec 2023

  14. Binay, D.: Stay on top of your day with proactive help from your Assistant. https://www.blog.google/products/assistant/stay-top-your-day-proactive-help-your-assistant/. Accessed 29 Dec 2023

  15. Romero, J.: Google TV’s new Ambient Mode with “proactive personal results” rolling out for some. https://chromeunboxed.com/google-tv-ambient-mode-proactive?utm_content=cmp-true. Accessed 29 Jan 2024

  16. Abreu, J., Santos, R., Silva, T., Marques, T., Cardoso, B.: Proactivity: the next step in voice assistants for the TV ecosystem. Commun. Comput. Inf. Sci. 1202, 103–116 (2020)

    Google Scholar 

  17. Sarikaya., R.: The technology behind personal digital assistants: an overview of the system architecture and key components. IEEE Sig. Process. Mag. 34(1), 67–81 (2017)

    Google Scholar 

  18. Isbell, C.L., Pierce, J.S.: An IP continuum for adaptive interface design. In: Proceedings of HCI International (2005)

    Google Scholar 

  19. Lopez-Tovar, H., Charalambous, A., Dowell, J.: Managing smartphone interruptions through adaptive modes and modulation of notifications. In: Proceedings of the 20th International Conference of Intelligent User Interface, pp. 296–299 (2015)

    Google Scholar 

  20. Yorke-Smith, N., Saadati, S., Myers, K.L., Morley, D.N.: The design of a proactive personal agent for task management. Int. J. Artif. Intell. Tools 21(1), 30 (2012)

    Google Scholar 

  21. Amershi, S., et al.: Guidelines for Human AI Interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Article 3, pp. 1–13 (2019)

    Google Scholar 

  22. Cha, N., et al.: Hello there! Is now a good time to talk? Opportune moments for proactive interactions with smart speakers. In: Proceeding of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, vol. 4, no. 3, Article 74, pp. 28 (2020)

    Google Scholar 

  23. Meurisch, C., et al.: Exploring user expectations of proactive AI systems. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4(4), Article 146, pp. 22 (2020)

    Google Scholar 

  24. Tan, H., et al.: Relationship between social robot proactive behavior and the human perception of anthropomorphic attributes. Adv. Robot. 34(20), 1324–1336 (2020)

    Article  Google Scholar 

  25. Brave, S., Nass, C., Hutchinson, K.: Computers that care: investigating the effects of orientation of emotion exhibited by an embodied computer agent. Int. J. Hum. Comput. Stud. 62(2), 161–178 (2005)

    Article  Google Scholar 

  26. Ochs, M., Pelachaud, C., Sadek, D.: An empathic virtual dialog agent to improve human-machine interaction. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS ‘08), pp. 89–06. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2008)

    Google Scholar 

  27. Martin, B., Hanington, B.: Universal Methods of Design, 1sr edn. Rockport Publishers, Beverly (2013)

    Google Scholar 

  28. Bickmore, T., Gruber, A., Picard, R.: Establishing the computer–patient working alliance in automated health behavior change interventions. Patient Educ. Couns. 59(1), 21–30 (2005)

    Article  Google Scholar 

  29. Mahlke, S., Thuring, M.: Studying antecedents of emotional experiences in interactive contexts. In: Proceedings of CHI 2007 - Emotion & Empathy (2007)

    Google Scholar 

  30. Abreu, J., Camargo, J., Santos, R., Almeida, P., Beça, P., Silva, T.: UX evaluation methodology for iTV: assessing a natural language interaction system. Commun. Comput. Inf. Sci. 1433, 149–161 (2021)

    Google Scholar 

  31. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    Article  Google Scholar 

  32. Brooke, J.: SUS-A quick and dirty usability scale. In: P. W. Jordan, B. Thomas, I. L. McClelland, B. Weerdmeester (Eds.), Usability Evaluation in Industry, pp. 6 (1996)

    Google Scholar 

  33. Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G., Ziegler, J. (eds.) Mensch & Computer 2003. Berichte des German Chapter of the ACM, vol. 57, pp. 187–196. Verlag, Vieweg+Teubner (2003)

    Chapter  Google Scholar 

  34. Charrier, L., Rieger, A., Galdeano, A., Cordier, A., Lefort, M., Hassas, S.: The RoPE scale: a measure of how empathic a robot is perceived. In: Proceedings of the 14th ACM/IEEE International Conference of Human-Robot Interaction (HRI’19), pp. 656–657. IEEE Press (2019)

    Google Scholar 

  35. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006)

    Article  Google Scholar 

  36. Saldaña, J.: The Coding Manual for Qualitative Researchers. SAGE Publications, London, UK (2016)

    Google Scholar 

  37. Nothdurft, F., Ultes, S., Minker, W.: Finding appropriate interaction strategies for proactive dialogue systems—an open quest. In: Proceedings of the 2nd European 5th Nordic Symposium Multimodal Communication, pp. 73–80. Electronic Press, Estonia (2015)

    Google Scholar 

  38. Peng, Z., Kwon, Y., Lu, J., Wu, Z., Ma, X.: Design and evaluation of service robot’s proactivity in decision-making support process. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, paper 98, pp. 1–13. ACM, New York (2019)

    Google Scholar 

  39. Biermann, M., Schweiger, E., Jentsch, M.: Talking to stupid?!? Improving Voice User Interfaces. Mensch und Computer 2019 - Usability Professionals. Gesellschaft für Informatik (2019)

    Google Scholar 

Download references

Acknowledgments

The study reported in this publication was supported by FCT– Foundation for Science and Technology nr. 2020.08009. BD and DigiMedia Research Centre, under the project UIDB/05460/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, T., Ferraz de Abreu, J., Santos, R. (2024). Insights from User Perceptions Towards the Design of a Proactive Intelligent TV Assistant. In: Marcus, A., Rosenzweig, E., Soares, M.M. (eds) Design, User Experience, and Usability. HCII 2024. Lecture Notes in Computer Science, vol 14714. Springer, Cham. https://doi.org/10.1007/978-3-031-61356-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61356-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61355-5

  • Online ISBN: 978-3-031-61356-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics