Skip to main content

Digital Twins and Extended Reality for Tailoring Better Adapted Cybersecurity Trainings in Critical Infrastructures

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2024)

Abstract

Due to their value and interconnected role in our societies, critical infrastructures are vulnerable national assets increasingly becoming targets of cyber-attacks. Despite there being a multitude of training programs in cybersecurity offered, human errors are still accountable for a majority of breaches. As current training and awareness courses are insufficient to meet the current cybersecurity challenges in critical infrastructures, this paper examines how they could be improved with new solutions. In addition to current training programs lacking in effectively addressing human factors, identifying appropriate outcome and performance measures to assess the effectiveness of the program remains an issue. In order to address the uniqueness of an individual’s human factors and natural learning trajectory, the need for tailored training programs, to meet the demands of each user and influence a change in cyber-behavior, is proposed. These tailored training programs would be enhanced with the inclusion of training aids such as Digital Twins and Extended Reality. Indeed, recent works started to explore how combining Digital Twins and Augmented or Virtual reality could enhance learning in different contexts. We have studied how some human features could be replicated and used in the digital twin technologies (such as personality, attention, emotions or age and gender), as well as the human factors enhanced in the overall simulated virtual experience (embodiment, engagement, situational awareness, collaboration). However, there are still ongoing challenges and ethical concerns with such solutions. We conclude with a discussion of future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardito, L., Petruzzelli, A., Panniello, U., Garavelli, A.: Towards industry 4.0: mapping digital technologies for supply chain management-marketing integration. Bus. Process Manag. J. 25(2), 323–346 (2019)

    Google Scholar 

  2. Galloway, B., Hancke, G.: Introduction to industrial control networks. IEEE Commun. surv. tutorials 15(2), 860–880 (2012)

    Article  Google Scholar 

  3. Lehto, M.: Cyber-attacks against critical infrastructure. In: Lehto, M., Neittaanmäki, P. (eds.) Cyber Security: Critical Infrastructure Protection, pp. 3–42. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91293-2_1

    Chapter  Google Scholar 

  4. Deibert, R.J., Rohozinski, R.: Risking security: policies and paradoxes of cyberspace security. Int. Polit. Sociol. 4(1), 15–32 (2010). https://doi.org/10.1111/j.1749-5687.2009.00088.x

    Article  Google Scholar 

  5. Cordesman, A.H.: Cyber-Threats, Information Warfare, and Critical Infrastructure Protection: Defending the Us Homeland. Greenwood Publishing Group, CA (2001)

    Google Scholar 

  6. Sarwat, A.I., Sundararajan, A., Parvez, I., Moghaddami, M., Moghadasi, A.: Toward a smart city of interdependent critical infrastructure networks. In: Amini, M.H., Boroojeni, K.G., Iyengar, S.S., Pardalos, P.M., Blaabjerg, F., Madni, A.M. (eds.) Sustainable Interdependent Networks. SSDC, vol. 145, pp. 21–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74412-4_3

    Chapter  Google Scholar 

  7. European Commission: Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on measures for a high common level of cybersecurity across the Union, amending Regulation (EU) No 910/2014 and Directive (EU) 2018/1972, and repealing Directive (EU) 2016/1148 (NIS 2 Directive) 2022. https://eur-lex.europa.eu/eli/dir/2022/2555. Accessed 22 Jan 2024

  8. Chowdhury, N., Gkioulos, V.: Key competencies for critical infrastructure cyber-security: a systematic literature review. Inf. Comput. Secur. 29(5), 697–723 (2021)

    Article  Google Scholar 

  9. Alsharif, M., Mishra, S., AlShehri, M.: Impact of human vulnerabilities on cybersecurity. Comput. Syst. Sci. Eng. 40(3), 1153–1166 (2022). https://doi.org/10.32604/csse.2022.019938

    Article  Google Scholar 

  10. Leach, J.: Improving user security behaviour. Comput. Secur. 22(8), 685–692 (2003)

    Article  Google Scholar 

  11. Ratchford, M. M., Wang, Y.: BYOD-insure: a security assessment model for enterprise byod. In: 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ), pp. 1–10. IEEE, Miami Beach, FL, USA (2019)

    Google Scholar 

  12. Crossler, R., Bélanger, F.: An extended perspective on individual security behaviors: protection motivation theory and a unified security practices (USP) instrument. ACM SIGMIS Database: DATABASE Adv. Inf. Syst. 45(4), 51–71 (2014)

    Article  Google Scholar 

  13. Alohali, M., Clarke, N., Furnell, S., Albakri, S.: Information security behavior: recognizing the influencers. In: 2017 Computing Conference, pp. 844–853. IEEE, London, UK (2017)

    Google Scholar 

  14. Nurse, J. R.: Cybercrime and you: how criminals attack and the human factors that they seek to exploit. arXiv preprint arXiv:1811.0662 (2018)

  15. Case, D. U.: Analysis of the cyber attack on the Ukrainian power grid. Electricity Inf. Sharing Anal. Cent. (E-ISAC) 388, 1–29 (2016)

    Google Scholar 

  16. The attack on Colonial pipeline: what we’ve learned & what we’ve done over the past two years. https://www.cisa.gov/news-events/news/attack-colonial-pipeline-what-weve-learned-what-weve-done-over-past-two-years. Accessed 29 Jan 2024

  17. IRGC-affiliated cyber actors exploit PLCs in multiple sectors, including U.S. water and wastewater systems facilities. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-335a. Accessed 29 Jan 2024

  18. Morelli, U., Nicolodi, L., Ranise, S.: An open and flexible cybersecurity training laboratory in IT/OT infrastructures. In: Fournaris, A.P., et al. (eds.) IOSEC/MSTEC/FINSEC -2019. LNCS, vol. 11981, pp. 140–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42051-2_10

    Chapter  Google Scholar 

  19. Drogkaris, P., Bourka, A.: European Union Agency for Cybersecurity: Cybersecurity culture guidelines - Behavioural aspects of cybersecurity, Drogkaris, P.(eds.), Bourka, A.(editor), European Network and Information Security Agency (2018). https://doi.org/10.2824/324042

  20. McMahon, C.: In Defence of the human factor. Front. Psychol. 11, 1390 (2020)

    Article  Google Scholar 

  21. Canham, M.: Repeat clicking: a lack of awareness is not the problem. In: HCI International 2023 - Late Breaking Papers: 25th International Conference on Human-Computer Interaction, pp. 325–342. Copenhagen, Denmark (2023)

    Google Scholar 

  22. Sütterlin, S., et al.: The role of IT background for metacognitive accuracy, confidence and overestimation of deep fake recognition skills. In: International Conference on Human-Computer Interaction, pp. 103–119. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-05457-0_9

  23. Sütterlin, S., et al.: Individual deep fake recognition skills are affected by viewer’s political orientation, agreement with content and device used. In: International Conference on Human-Computer Interaction, pp. 269–284. Springer Nature Switzerland, Copenhagen, Denmark, Cham (2023). https://doi.org/10.1007/978-3-031-35017-7_18

  24. Lif, P., Sommestad, T.: Human factors related to the performance of intrusion detection operators. HAISA, pp. 265–275 (2015)

    Google Scholar 

  25. Pirta-Dreimane, R., et al.: Application of intervention mapping in cybersecurity education design. Front. Educ. 7, 998335 (2022)

    Google Scholar 

  26. Ruh, P., Morgenstern, H.: Establishing cyberpsychology at universities in the area of cyber security. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1499, pp. 294–301. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90179-0_38

    Chapter  Google Scholar 

  27. European cybersecurity skills framework role profiles. https://www.enisa.europa.eu/publications/european-cybersecurity-skills-framework-role-profiles. Accessed 29 Jan 2024

  28. Newhouse, W., Keith, S., Scribner, B., Witte, G.: National initiative for cybersecurity education (NICE) cybersecurity workforce framework. NIST Spec. Publ. 800(2017), 181 (2017)

    Google Scholar 

  29. Knox, B.J., Lugo, R.G., Sütterlin, S.: Cognisance as a human factor in military cyber Defence education. IFAC-Pap. OnLine 52(19), 163–168 (2019)

    Article  Google Scholar 

  30. Huff, P., Leiterman, S., Springer, J.: Cyber arena: an open-source solution for scalable cybersecurity labs in the cloud. In: Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1, pp. 221–227. ACM, Toronto, Canada (2023)

    Google Scholar 

  31. Jelo, M., Helebrandt, P.: Gamification of cyber ranges in cybersecurity education. In: 2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 280–285. IEEE, Stary Smokovec, Slovakia (2022)

    Google Scholar 

  32. Di Domenico, S.I., Ryan, R.M.: The emerging neuroscience of intrinsic motivation: a new frontier in self-determination research. Front. Hum. Neurosci. 11, 145 (2017)

    Article  Google Scholar 

  33. Jin, G., Tu, M., Kim, T.-H., Heffron, J., White, J.: Evaluation of game-based learning in cybersecurity education for high school students. J. Educ. Learn. 12, 150 (2018)

    Google Scholar 

  34. Jøsok, Ø., Knox, B.J., Helkala, K., Lugo, R.G., Sütterlin, S., Ward, P.: Exploring the hybrid space. In: Schmorrow, D.D.D., Fidopiastis, C.M.M. (eds.) AC 2016. LNCS (LNAI), vol. 9744, pp. 178–188. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39952-2_18

    Chapter  Google Scholar 

  35. Staheli, D., et al.: Collaborative data analysis and discovery for cyber security. In: Twelfth Symposium on Usable Privacy and Security (SOUPS 2016) (2016)

    Google Scholar 

  36. Steinke, J., et al.: Improving cybersecurity incident response team effectiveness using teams-based research. IEEE Secur. Priv. 13(4), 20–29 (2015)

    Google Scholar 

  37. Klein, G.A., Calderwood, R.: Decision models: some lessons from the field. IEEE Trans. Syst. Man Cybernet. 21, 1018–1026 (1991)

    Article  Google Scholar 

  38. Wright, R.T., Jensen, M.L., Thatcher, J.B., Dinger, M., Marett, K.: Research note-influence techniques in phishing attacks: an examination of vulnerability and resistance. Inf. Syst. Res. 25(2), 385–400 (2014)

    Article  Google Scholar 

  39. Suh, A., Prophet, J.: The state of immersive technology research: a literature analysis. Comput. Hum. Behav. 86, 77–90 (2018)

    Article  Google Scholar 

  40. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)

    Google Scholar 

  41. Knoll, M., Stieglitz, S.: Augmented Reality und Virtual Reality-Einsatz im Kontext von Arbeit, Forschung und Lehre. HMD Praxis der Wirtschaftsinformatik 59(1), 6–22 (2022)

    Article  Google Scholar 

  42. Ask, T.F., Kullman, K., Sütterlin, S., Knox, B.J., Engel, D., Lugo, R.G.: A 3D mixed reality visualization of network topology and activity results in better dyadic cyber team communication and cyber situational awareness. Front. Big Data 6, 1042783 (2023)

    Article  Google Scholar 

  43. Seo, J.H., Bruner, M., Payne, A., Gober, N., McMullen, D., Chakravorty, D.K.: Using virtual reality to enforce principles of cybersecurity. J. Comput. D Sci. Educ. 10(1), 81–87 (2019)

    Google Scholar 

  44. Anwar, M. S., et al.: Immersive learning and AR/VR-based education: cybersecurity measures and risk management. In: Cybersecurity Management in Education Technologies, pp. 1–22. CRC Press (2023)

    Google Scholar 

  45. Veneruso, S.V., Ferro, L.S., Marrella, A., Mecella, M., Catarci, T.: CyberVR: an interactive learning experience in virtual reality for cybersecurity related issues. In: Proceedings of the International Conference on Advanced Visual Interfaces, pp. 1–8. ACM, Salerno, Italy (2020)

    Google Scholar 

  46. Makransky, G., Borre-Gude, S., Mayer, R.E.: Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. J. Comput. Assist. Learn. 35(6), 691–707 (2019)

    Article  Google Scholar 

  47. Makransky, G., Petersen, G.B.: The cognitive affective model of immersive learning (CAMIL): a theoretical research-based model of learning in immersive virtual reality. Educ. Psychol. Rev. 33, 937–958 (2021)

    Article  Google Scholar 

  48. Shafto, M., et al.: Draft modeling, simulation, information technology & processing roadmap. Technol. Area 11, 1–32 (2010)

    Google Scholar 

  49. Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021)

    Article  Google Scholar 

  50. Löcklin, A., Jung, T., Jazdi, N., Ruppert, T., Weyrich, M.: Architecture of a human-digital twin as common interface for operator 4.0 applications. Procedia CIRP 104, 458–463 (2021)

    Google Scholar 

  51. Naudet, Y., Baudet, A., Risse, M.: Human digital twin in industry 4.0: concept and preliminary model. In: IN4PL, pp. 137–144. ISBN (2021)

    Google Scholar 

  52. Karvonen, A., Saariluoma, P.: Cognitive mimetics and human digital twins: towards holistic AI design. ERCIM News 2023(132), 17–18 (2023)

    Google Scholar 

  53. Yin, Y., Zheng, P., Li, C., Wang, L.: A state-of-the-art survey on augmented reality-assisted digital twin for futuristic human-centric industry transformation. Robot. Comput. Integr. Manuf. 81, 102515 (2023)

    Article  Google Scholar 

  54. Kaarlela, T., Pieskä, S., Pitkäaho, T.: Digital twin and virtual reality for safety training. In: 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000115–000120. IEEE, Mariehamn, Finland (2020)

    Google Scholar 

  55. Tähemaa, T., Bondarenko, Y.: Digital twin based Synchronised control and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng. 19(1), 128–144 (2019)

    Article  Google Scholar 

  56. Wu, P., Qi, M., Gao, L., Zou, W., Miao, Q., Liu, L.L.: Research on the virtual reality synchronization of workshop digital twin. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 875–879. IEEE, Chongqing, China (2019)

    Google Scholar 

  57. Voordijk, H., Vahdatikhaki, F., Hesselink, L.: Digital twin-based asset inspection and user-technology interactions. J. Eng. Des. Technol. (2023)

    Google Scholar 

  58. McConnell, M.M., Eva, K.W.: The role of emotion in the learning and transfer of clinical skills and knowledge. Acad. Med. J. Assoc. Am. Med. Coll. 87(10), 1316–1322 (2012)

    Article  Google Scholar 

  59. Brosch, T., Scherer, K., Grandjean, D., Sander, D.: The impact of emotion on perception, attention, memory, and decision-making. Swiss Med. Wkly. 143(1920), w13786–w13786 (2013)

    Google Scholar 

  60. Lerner, J.S., Keltner, D.: Beyond valence: toward a model of emotion-specific influences on judgement and choice. Cogn. Emot. 14(4), 473–493 (2000)

    Article  Google Scholar 

  61. Amara, K., Kerdjidj, O., Ramzan, N.: Emotion recognition for affective human digital twin by means of virtual reality enabling technologies. IEEE Access 11, 74216–74227 (2023)

    Google Scholar 

  62. Magalhães, M., Coelho, A., Melo, M., Bessa, M.: Measuring users’ emotional responses in multisensory virtual reality: a systematic literature review. Multimed. Tools Appl. 83, 1–41 (2023)

    Article  Google Scholar 

  63. Greenfeld, A., Lugmayr, A., Lamont, W.: Comparative reality: measuring user experience and emotion in immersive virtual environments. In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 204-209. IEEE, Taichung, Taiwan (2018)

    Google Scholar 

  64. Tyng, C.M., Amin, H.U., Saad, M.N., Malik, A.S.: The influences of emotion on learning and memory. Front. Psychol. 8, 1454 (2017)

    Google Scholar 

  65. Zhang, X.A., Borden, J.: How to communicate cyber-risk? An examination of behavioral recommendations in cybersecurity crises. J. Risk Res. 23(10), 1336–1352 (2020)

    Article  Google Scholar 

  66. Gulenko, I.: Improving passwords: influence of emotions on security behaviour. Inf. Manag. Comput. Secur. 22(2), 167–178 (2014)

    Article  Google Scholar 

  67. Bachura, E., Valecha, R., Chen, R., Rao, H.R.: The OPM data breach: an investigation of shared emotional reactions on Twitter. MIS Q. 46(2), 881–910 (2022)

    Google Scholar 

  68. Oberauer, K.: Working memory and attention - a conceptual analysis and review. J. Cogn. 2(1), 1–23 (2019)

    Google Scholar 

  69. Wang, C.C., Hung, J.C., Chen, H.C.: How prior knowledge affects visual attention of Japanese mimicry and onomatopoeia and learning outcomes: evidence from virtual reality eye tracking. Sustain. 13(19), 1–28 (2021)

    Google Scholar 

  70. Mirault, J., Albrand, J.P., Lassault, J., Grainger, J., Ziegler, J.C.: Using virtual reality to assess reading fluency in children. Fronti. Educ. 6, 693355 (2021)

    Article  Google Scholar 

  71. Al’Absi, M., Hugdahl, K., Lovallo, W.R.: Adrenocortical stress responses and altered working memory performance. Psychophysiol. 39(1), 95–99 (2002)

    Article  Google Scholar 

  72. Anderson, B.B., Kirwan, C.B., Jenkins, J.L., Eargle, D., Howard, S., Vance, A.: How polymorphic warnings reduce habituation in the brain: insights from an fMRI study. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2883–2892. ACM, Seoul, Korea (2015)

    Google Scholar 

  73. Montañez, R., Golob, E., Xu, S.: Human cognition through the lens of social engineering cyberattacks. Front. Psychol. 11, 1755 (2020)

    Article  Google Scholar 

  74. Anwar, M., He, W., Ash, I., Yuan, X., Li, L., Xu, L.: Gender difference and employees’ cybersecurity behaviors. Comput. Hum. Behav. 69, 437–443 (2017)

    Article  Google Scholar 

  75. Tømte, C., Hatlevik, O.E.: Gender-differences in self-efficacy ICT related to various ICT-user profiles in Finland and Norway. How do self-efficacy, gender and ICT-user profiles relate to findings from PISA 2006. Comput. Educ. 57(1), 1416–1424 (2011)

    Google Scholar 

  76. Branley-Bell, D., Coventry, L., Dixon, M., Joinson, A., Briggs, P.: Exploring age and gender differences in ICT cybersecurity behaviour. Hum. Behav. Emerg. Technol. 2022, 1–10 (2022)

    Google Scholar 

  77. Miller, M.E., Spatz, E.: A unified view of a human digital twin. Hum. Intell. Syst. Integr. 4(1–2), 23–33 (2022)

    Article  Google Scholar 

  78. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)

    Article  Google Scholar 

  79. Condori-Fernandez, N., Suni-Lopez, F., Muñante, D., Daneva, M.: How can personality influence perception on security of context-aware applications? In: Groß, T., Viganò, L. (eds.) STAST 2020. LNCS, vol. 12812, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79318-0_1

    Chapter  Google Scholar 

  80. Shappie, A.T., Dawson, C.A., Debb, S.M.: Personality as a predictor of cybersecurity behavior. Psychol. Popular Media 9(4), 475 (2020)

    Article  Google Scholar 

  81. Thorp, S.O., Rimol, L.M., Grassini, S.: Association of the big five personality traits with training effectiveness, sense of presence, and cybersickness in virtual reality. Multimodal Technol. Interact. 7(2), 11 (2023)

    Article  Google Scholar 

  82. Montañez, R., Atyabi, A., Xu, S.: Social engineering attacks and defenses in the physical world vs. cyberspace: a contrast study. In: Cybersecurity and Cognitive Science, pp. 3–41. Academic Press (2022)

    Google Scholar 

  83. Wilson, M.: Six views of embodied cognition. Psychon. Bull. Rev. 9(4), 625–636 (2002)

    Article  Google Scholar 

  84. Wei, C.W., Chen, H.H., Chen, N.S.: Effects of embodiment-based learning on perceived cooperation process and social flow. Procedia. Soc. Behav. Sci. 197, 608–613 (2015)

    Article  Google Scholar 

  85. Marre, Q., Huet, N., Labeye, E.: Embodied mental imagery improves memory. Q. J. Exp. Psychol. 74(8), 1396–1405 (2021)

    Article  Google Scholar 

  86. Harackiewicz, J.M., Smith, J.L., Priniski, S.J.: Interest matters: the importance of promoting interest in education. Policy Insights Behav. Brain Sci. 3(2), 220–227 (2016)

    Article  Google Scholar 

  87. Rajivan, P., Cooke, N.: Impact of team collaboration on cybersecurity situational awareness. Theory Models Cyber Situation Awareness, pp. 203–226 (2017)

    Google Scholar 

  88. Dykstra, J., Rowe, N., Shimeall, T., Horneman, A., Midler, M.: Introduction: on the nature of situational awareness. Digital Threats Res. Pract. 2(4), 1–3 (2021)

    Article  Google Scholar 

  89. Munsinger, B., Beebe, N., Richardson, T.: Virtual reality for improving cyber situational awareness in security operations centers. Comput. Secur. 132, 103368 (2023)

    Article  Google Scholar 

  90. Kabil, A., Duval, T., Cuppens, N., Le Comte, G., Halgand, Y., Ponchel, C.: From cyber security activities to collaborative virtual environments practices through the 3D CyberCOP platform. In: Ganapathy, V., Jaeger, T., Shyamasundar, R.K. (eds.) ICISS 2018. LNCS, vol. 11281, pp. 272–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05171-6_14

    Chapter  Google Scholar 

  91. Ask, T.F., Lugo, R.G., Knox, B.J., Sütterlin, S.: Human-human communication in cyber threat situations: a systematic review. In: Stephanidis, C., et al. (eds.) HCII 2021. LNCS, vol. 13096, pp. 21–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90328-2_2

    Chapter  Google Scholar 

  92. Dubovi, I.: Cognitive and emotional engagement while learning with VR: the perspective of multimodal methodology. Comput. Educ. 183, 104495 (2022)

    Article  Google Scholar 

  93. Chi, M.T., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49(4), 219–243 (2014)

    Article  Google Scholar 

  94. Greene, B.A.: Measuring cognitive engagement with self-report scales: reflections from over 20 years of research. Educ. Psychol. 50(1), 14–30 (2015)

    Article  Google Scholar 

  95. Giaretta, A.: Security and privacy in virtual reality–a literature survey (2022). arXiv preprint arXiv:2205.00208

  96. 23andMe confirms hackers stole ancestry data on 6.9 million users. https://tcrn.ch/47Hzimn. Accessed 21 Jan 2024

  97. Braun, M., Krutzinna, J.: Digital twins and the ethics of health decision-making concerning children. Patterns (NY) 3(4), 100469 (2022)

    Article  Google Scholar 

  98. Stanton, B., Theofanos, M.F., Prettyman, S.S., Furman, S.: Security fatigue. IT Prof. 18(5), 26–32 (2016)

    Article  Google Scholar 

  99. Dykstra, J., Paul, C. L.: Cyber operations stress survey (COSS): studying fatigue, frustration, and cognitive workload in cybersecurity operations. In: Proceedings of the 11th USENIX Workshop on Cyber Security Experimentation and Test (CSET 18), pp. 1–8. ACM, Baltimore, USA (2018)

    Google Scholar 

  100. Ferreira, A., Lenzini, G.: An analysis of social engineering principles in effective phishing. In: 2015 Workshop on Socio-Technical Aspects in Security and Trust, pp. 9–16. IEEE, Verona, Italy (2015)

    Google Scholar 

  101. Agyepong, E., Cherdantseva, Y., Reinecke, P., Burnap, P.: Challenges and performance metrics for security operations center analysts: a systematic review. J. Cyber Secur. Technol. 4, 125–152 (2020)

    Article  Google Scholar 

  102. Lugo, R.G., Sütterlin, S.: Cyber officer profiles and performance factors. In: Harris, D. (ed.) EPCE 2018. LNCS (LNAI), vol. 10906, pp. 181–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91122-9_16

    Chapter  Google Scholar 

  103. Childs, E., et al.: An overview of enhancing distance learning through augmented and virtual reality technologies. arXiv Preprint arXiv:2101.11000 (2021). https://doi.org/10.48550/arXiv.2101.11000

Download references

Acknowledgement

The project ATHENA is funded by the European Union (Digital Europe Programme) under Grant Agreement No. 101127970 and is supported by the European Cybersecurity Competence Centre. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Cybersecurity Competence Centre. Neither the European Union nor the European Cybersecurity Competence Centre can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloïse Zehnder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zehnder, E. et al. (2024). Digital Twins and Extended Reality for Tailoring Better Adapted Cybersecurity Trainings in Critical Infrastructures. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(), vol 14694. Springer, Cham. https://doi.org/10.1007/978-3-031-61569-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61569-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61568-9

  • Online ISBN: 978-3-031-61569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics