Skip to main content

Enhancing Eye-Tracking Performance Through Multi-task Learning Transformer

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14695))

Included in the following conference series:

Abstract

In this study, we introduce an innovative EEG signal reconstruction sub-module designed to enhance the performance of deep learning models on EEG eye-tracking tasks. This sub-module can integrate with all Encoder-Classifier-based deep learning models and achieve end-to-end training within a multi-task learning framework. Additionally, as the module operates under unsupervised learning, it is versatile and applicable to various tasks. We demonstrate its effectiveness by incorporating it into advanced deep-learning models, including Transformers and pre-trained Transformers. Our results indicate a significant enhancement in feature representation capabilities, evidenced by a Root Mean Squared Error (RMSE) of 54.1 mm. This represents a notable improvement over existing methods, showcasing the sub-module’s potential in refining EEG-based model performance.

The success of this approach suggests that this reconstruction sub-module is capable of enhancing the feature extraction ability of the encoder. Due to the sub-module being mounted as a sub-task under the main task and maintained through a multi-task learning framework, our model preserves the end-to-end training process of the original model. In contrast to pre-training methods like autoencoder, our model saves computational costs associated with pre-training and exhibits greater flexibility in adapting to various model structures. Benefiting from the unsupervised nature of the sub-module, it can be applied across diverse tasks. We believe it represents a novel paradigm for improving the performance of deep learning models in EEG-related challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ang, K.K., Guan, C.: Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 7(2), 139–146 (2013)

    Article  Google Scholar 

  2. Arjun, A., Rajpoot, A.S., Raveendranatha Panicker, M.: Introducing attention mechanism for EEG signals: emotion recognition with vision transformers. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 5723–5726 (2021). https://doi.org/10.1109/EMBC46164.2021.9629837

  3. Autthasan, P., et al.: MIN2NET: end-to-end multi-task learning for subject-independent motor imagery EEG classification. IEEE Trans. Biomed. Eng. 69(6), 2105–2118 (2021)

    Article  Google Scholar 

  4. Bagchi, S., Bathula, D.R.: EEG-ConvTransformer for single-trial EEG based visual stimuli classification. Pattern Recogn. 129, 108757 (2021)

    Article  Google Scholar 

  5. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  6. Chen, X., Li, C., Liu, A., McKeown, M.J., Qian, R., Wang, Z.J.: Toward open-world electroencephalogram decoding via deep learning: a comprehensive survey. IEEE Signal Process. Mag. 39(2), 117–134 (2022)

    Article  Google Scholar 

  7. Cheng, B., et al.: Evolutionary computation-based multitask learning network for railway passenger comfort evaluation from EEG signals. Appl. Soft Comput. 136, 110079 (2023)

    Article  Google Scholar 

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  9. Choo, S., et al.: Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition. Expert Syst. Appl. 227, 120348 (2023)

    Article  Google Scholar 

  10. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Ismail Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

    Article  MathSciNet  Google Scholar 

  14. Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 562–570 (2017)

    Google Scholar 

  15. Kastrati, A., et al.: EEGEyeNet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)

  16. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  17. Li, C., et al.: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism. Comput. Biol. Med. 143, 105303 (2022)

    Article  Google Scholar 

  18. Lu, W., Tan, T.P., Ma, H.: Bi-branch vision transformer network for EEG emotion recognition. IEEE Access 11, 36233–36243 (2023). https://doi.org/10.1109/ACCESS.2023.3266117

    Article  Google Scholar 

  19. Ma, X., Qiu, S., Zhang, Y., Lian, X., He, H.: Predicting epileptic seizures from intracranial EEG using LSTM-based multi-task learning. In: Lai, J.-H., Liu, C.-L., Chen, X., Zhou, J., Tan, T., Zheng, N., Zha, H. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 157–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03335-4_14

    Chapter  Google Scholar 

  20. Mao, W., Fathurrahman, H., Lee, Y., Chang, T.: EEG dataset classification using CNN method. In: Journal of Physics: Conference Series, vol. 1456, p. 012017. IOP Publishing (2020)

    Google Scholar 

  21. Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R.: Signal processing techniques applied to human sleep EEG signals-a review. Biomed. Signal Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  22. Rashid, M., et al.: Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front. Neurorobot. 14, 25 (2020)

    Article  Google Scholar 

  23. Song, Y., Wang, D., Yue, K., Zheng, N., Shen, Z.J.M.: EEG-based motor imagery classification with deep multi-task learning. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  24. Sun, J., Xie, J., Zhou, H.: EEG classification with transformer-based models. In: 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), pp. 92–93. IEEE (2021)

    Google Scholar 

  25. Teplan, M., et al.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  27. Yang, R., Modesitt, E.: ViT2EEG: leveraging hybrid pretrained vision transformers for EEG data. arXiv preprint arXiv:2308.00454 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Zhou, N., Qu, X. (2024). Enhancing Eye-Tracking Performance Through Multi-task Learning Transformer. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(), vol 14695. Springer, Cham. https://doi.org/10.1007/978-3-031-61572-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61572-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61571-9

  • Online ISBN: 978-3-031-61572-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics