Abstract
In this paper, we present an algorithm of gaze prediction from Electroencephalography (EEG) data. EEG-based gaze prediction is a new research topic that can serve as an alternative to traditional video-based eye-tracking. Compared to the existing state-of-the-art (SOTA) method, we improved the root mean-squared-error of EEG-based gaze prediction to 53.06 mm, while reducing the training time to less than 33% of its original duration. Our source code can be found at https://github.com/AmCh-Q/CSCI6907Project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bamatraf, S., et al.: A system for true and false memory prediction based on 2d and 3d educational contents and EEG brain signals. Comput. Intell. Neurosci. 2016, 45–45 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Kastrati, A., et al.: EEGEyeNet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)
Key, M.L., Mehtiyev, T., Qu, X.: Advancing EEG-based gaze prediction using depthwise separable convolution and enhanced pre-processing, preprint (2024)
Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)
Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)
Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wolf, L., et al.: A deep learning approach for the segmentation of electroencephalography data in eye tracking applications. arXiv preprint arXiv:2206.08672 (2022)
Xiang, B., Abdelmonsef, A.: Too fine or too coarse? The goldilocks composition of data complexity for robust left-right eye-tracking classifiers. arXiv preprint arXiv:2209.03761 (2022)
Xiang, B., Abdelmonsef, A.: Vector-based data improves left-right eye-tracking classifier performance after a covariate distributional shift. In: Kurosu, M., et al. (eds.) HCII 2022. LNCS, vol. 13516, pp. 617–632. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17615-9_44
Yang, R., Modesitt, E.: ViT2EEG: leveraging hybrid pretrained vision transformers for EEG data. arXiv preprint arXiv:2308.00454 (2023)
Acknowledgments
This study was part of the authors’ work in the course “CSCI 6907 Applied Machine Learning” in The George Washington University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors declare no competing interests.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, C., Liang, B., Key, M.L. (2024). Effect of Kernel Size on CNN-Vision-Transformer-Based Gaze Prediction Using Electroencephalography Data. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(), vol 14695. Springer, Cham. https://doi.org/10.1007/978-3-031-61572-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-61572-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61571-9
Online ISBN: 978-3-031-61572-6
eBook Packages: Computer ScienceComputer Science (R0)