Skip to main content

Small Languages and Big Models: Using ML to Generate Norwegian Language Social Media Content for Training Purposes

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14695))

Included in the following conference series:

  • 382 Accesses

Abstract

The advancement of language models has showcased their tremendous potential for both good purposes, and harmful misuse. However, the majority of research have been concentrated on high-resource languages, leaving much to be desired in low-resource languages. This article focuses on exploring the use of language models in Norwegian, a low-resource language. Addressing the threats these models pose in the context of influence operations in social media.

The methodology uses a mixed-methods approach, combining quantitative analysis and qualitative investigations. The quantitative analysis entails evaluating the performance of language models across various contexts, assessing their ability to generate perceived authentic content, and analyzing user responses to such generated content. The qualitative investigations involve conducting interviews and surveys to gather insights from participants, aiming to understand their experiences, perceptions, and concerns regarding the use of language models.

By investigating the use of language models in a low-resource language, this thesis aims to contribute to the advancement of natural language processing research in an underrepresented linguistic context. As well as exploring the use of these language models for training purposes in isolated social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A.A.A., Aljabouh, A., Donepudi, P.K., Choi, M.S.: Detecting fake news using machine learning: a systematic literature review (2021)

    Google Scholar 

  2. Brown, T.B., et al.: Language models are few-shot learners. CoRR https://arxiv.org/abs/2005.14165(2020)

  3. Buchanan, B., Lohn, A., Musser, M., Sedova, K.: Truth, lies, and automation. Technical report. Center for Security and Emerging Technology (2021)

    Google Scholar 

  4. Gereme, F., Zhu, W., Ayall, T., Alemu, D.: Combating fake news in “low-resource” languages: amharic fake news detection accompanied by resource crafting. Information (Basel) 12(1), 20 (2021)

    Google Scholar 

  5. Goldstein, J.A., Chao, J., Grossman, S., Stamos, A., Tomz, M.: Can AI write persuasive propaganda? (2023). https://osf.io/preprints/socarxiv/fp87b/

  6. Helkala, K.M., Rønnfeldt, C.F.: Understanding and gaining human resilience against negative effects of digitalization. In: Lehto, M., Neittaanmaki, P. (eds.) Cyber Security, vol. 56, pp. 79–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91293-2_4

    Chapter  Google Scholar 

  7. Koch, T.K., Frischlich, L., Lermer, E.: Effects of fact-checking warning labels and social endorsement cues on climate change fake news credibility and engagement on social media. J. Appl. Social Psychol. (2023). https://doi.org/10.1111/jasp.12959

  8. Kreps, S., McCain, R.M., Brundage, M.: All the news that’s fit to fabricate: Ai-generated text as a tool of media misinformation. J. Exp. Polit. Sci. 9(1), 104–117 (2022). https://doi.org/10.1017/XPS.2020.37

    Article  Google Scholar 

  9. Kummervold, P.E., De la Rosa, J., Wetjen, F., Brygfjeld, S.A.: Operationalizing a national digital library: the case for a Norwegian transformer model. In: Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), pp. 20–29 (2021). https://aclanthology.org/2021.nodalida-main.3/

  10. Linvill, D.L., Warren, P.L.: Troll factories: manufacturing specialized disinformation on twitter. Polit. Commun. 37(4), 447–467 (2020)

    Article  Google Scholar 

  11. Mackey, R.R.: Information warfare (2014). https://www.oxfordbibliographies.com/view/document/obo-9780199791279/obo-9780199791279-0024.xml. Accessed 26 Apr 2022

  12. Moravec, P.L., Minas, R.K., Dennis, A.R.: Fake news on social media: people believe what they want to believe when it makes no sense at all. MIS Q. 43(4) (2019)

    Google Scholar 

  13. of Norway, N.L.: Nbailab/nb-gpt-j-6b - huggingface. https://huggingface.co/NbAiLab/nb-gpt-j-6B. Accessed 15 Feb 2024

  14. Pew Research Center: Social media and news fact sheet. Technical report, Washington, D.C. (2022). https://www.pewresearch.org/journalism/fact-sheet/social-media-and-news-fact-sheet/

  15. Riedel, B., Augenstein, I., Spithourakis, G.P., Riedel, S.: A simple but tough-to-beat baseline for the fake news challenge stance detection task (2018)

    Google Scholar 

  16. Sanderson, Z., Brown, M.A., Bonneau, R., Nagler, J., Tucker, T.J.: Twitter flagged donald trump’s tweets with election misinformation: they continued to spread both on and off the platform (2021). https://doi.org/10.37016/mr-2020-77. https://misinforeview.hks.harvard.edu/article/twitter-flagged-donald-trumps-tweets-with-election-misinformation-they-continued-to-spread-both-on-and-off-the-platform/

  17. Sharevski, F., Alsaadi, R., Jachim, P., Pieroni, E.: Misinformation warning labels: twitter’s soft moderation effects on covid-19 vaccine belief echoes (2021)

    Google Scholar 

  18. Sivertsen, E.G., Hellum, N., A., B., Bjørnstad, L.B.: Hvordan gjøre samfunnet mer robust mot uønsket påvirkning i sosiale medier (2021). https://www.ffi.no/publikasjoner/arkiv/hvordan-gjore-samfunnet-mer-robust-mot-uonsket-pavirkning-i-sosiale-medier

  19. Sütterlin, S., et al.: The role of it background for metacognitive accuracy, confidence and overestimation of deep fake recognition skills. Lect. Notes Comput. Sci. 13310, 103–119 (2022)

    Google Scholar 

  20. Talwar, S., Dhir, A., Kaur, P., Zafar, N., Alrasheedy, M.: Why do people share fake news? associations between the dark side of social media use and fake news sharing behavior. J. Retail. Cons. Serv. 51 (2019)

    Google Scholar 

  21. Talwar, S., Dhir, A., Singh, D., Virk, G.S., Salo, J.: Sharing of fake news on social media: application of the honeycomb framework and the third-person effect hypothesis. J. Retail. Consum. Serv. 57, 102197 (2020)

    Article  Google Scholar 

  22. Tarman, B., Yigit, M.F.: The impact of social media on globalization, democratization and participative citizenship. J. Soc. Sci. Educ. 12(1) (2012)

    Google Scholar 

  23. Wang, B., Komatsuzaki, A.: GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model (2021). https://github.com/kingoflolz/mesh-transformer-jax

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Joachim Arnesen Aasen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aasen, O.J.A., Lugo, R.G., Knox, B.J. (2024). Small Languages and Big Models: Using ML to Generate Norwegian Language Social Media Content for Training Purposes. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2024. Lecture Notes in Computer Science(), vol 14695. Springer, Cham. https://doi.org/10.1007/978-3-031-61572-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61572-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61571-9

  • Online ISBN: 978-3-031-61572-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics