Skip to main content

Optimizing Parallel System Efficiency: Dynamic Task Graph Adaptation with Recursive Tasks

  • Conference paper
  • First Online:
Asynchronous Many-Task Systems and Applications (WAMTA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14626))

Included in the following conference series:

  • 205 Accesses

Abstract

Task-based programming models significantly improve the efficiency of parallel systems. The Sequential Task Flow (STF) model focuses on static task sizes within task graphs, but determining optimal granularity during graph submission is tedious. To overcome this, we extend StarPU’s STF recursive tasks model, enabling dynamic transformation of tasks into subgraphs. Early evaluations on homogeneous shared memory reveal that this just-in-time adaptation enhances performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3_80

    Chapter  Google Scholar 

  2. Cojean, T., Guermouche, A., Hugo, A., Namyst, R., Wacrenier, P.A.: Resource aggregation for task-based Cholesky factorization on top of modern architectures. Parallel Comput. 83, 73–92 (2019)

    Article  MathSciNet  Google Scholar 

  3. Faverge, M., et al.: Programming heterogeneous architectures using hierarchical tasks. Concurrency Comput. Pract. Experience 35(25), e7811 (2023)

    Article  Google Scholar 

  4. Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: a lightweight parallel and heterogeneous task graph computing system. IEEE TPDS 33(6) (2022)

    Google Scholar 

  5. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of task nesting and dependencies in OpenMP. In: IPDPS (2017)

    Google Scholar 

  6. Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG scheduling for hybrid distributed systems. In: IPDPS (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Morin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Furmento, N., Guermouche, A., Lucas, G., Morin, T., Thibault, S., Wacrenier, PA. (2024). Optimizing Parallel System Efficiency: Dynamic Task Graph Adaptation with Recursive Tasks. In: Diehl, P., Schuchart, J., Valero-Lara, P., Bosilca, G. (eds) Asynchronous Many-Task Systems and Applications. WAMTA 2024. Lecture Notes in Computer Science, vol 14626. Springer, Cham. https://doi.org/10.1007/978-3-031-61763-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61763-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61762-1

  • Online ISBN: 978-3-031-61763-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics