Abstract
Task-based programming models significantly improve the efficiency of parallel systems. The Sequential Task Flow (STF) model focuses on static task sizes within task graphs, but determining optimal granularity during graph submission is tedious. To overcome this, we extend StarPU’s STF recursive tasks model, enabling dynamic transformation of tasks into subgraphs. Early evaluations on homogeneous shared memory reveal that this just-in-time adaptation enhances performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3_80
Cojean, T., Guermouche, A., Hugo, A., Namyst, R., Wacrenier, P.A.: Resource aggregation for task-based Cholesky factorization on top of modern architectures. Parallel Comput. 83, 73–92 (2019)
Faverge, M., et al.: Programming heterogeneous architectures using hierarchical tasks. Concurrency Comput. Pract. Experience 35(25), e7811 (2023)
Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: a lightweight parallel and heterogeneous task graph computing system. IEEE TPDS 33(6) (2022)
Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of task nesting and dependencies in OpenMP. In: IPDPS (2017)
Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical DAG scheduling for hybrid distributed systems. In: IPDPS (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Furmento, N., Guermouche, A., Lucas, G., Morin, T., Thibault, S., Wacrenier, PA. (2024). Optimizing Parallel System Efficiency: Dynamic Task Graph Adaptation with Recursive Tasks. In: Diehl, P., Schuchart, J., Valero-Lara, P., Bosilca, G. (eds) Asynchronous Many-Task Systems and Applications. WAMTA 2024. Lecture Notes in Computer Science, vol 14626. Springer, Cham. https://doi.org/10.1007/978-3-031-61763-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-61763-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61762-1
Online ISBN: 978-3-031-61763-8
eBook Packages: Computer ScienceComputer Science (R0)