Skip to main content

Dimension Reduction Stacking for Deep Solar Wind Clustering

  • Conference paper
  • First Online:
Next Generation Data Science (SDSC 2023)

Abstract

In-situ observations of solar wind plasma exhibit statistical differences according to their coronal origins. These in-situ conditions are a direct result of various processes such as ionization and acceleration occur in the inner corona. Machine learning methods have been successful in characterizing solar wind in-situ observations using unsupervised deep clustering and dimensionality reduction techniques, but it remains unclear as to how solar wind data embedding and downstream clustering could be improved while providing better interpretability in machine learning process. In this study, we explore the impact of distance metrics on solar wind in-situ data clustering. We evaluate the metric performance by applying it to dimension-reduction-stacking and deep clustering techniques and comparing it with state-of-the-art methods using solar wind in-situ measurements. Our work demonstrates the potential for customized distance metrics to improve the interpretability and performance of deep clustering approaches applied in solar wind in-situ observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloch, T., Watt, C., Owens, M. et al.: Data-driven classification of coronal hole and streamer belt solar wind. Sol. Phys. 295(41) (2020) https://doi.org/10.1007/s11207-020-01609-z

  2. Bravo, S., Stewart, G.A.: Fast and slow wind from solar coronal holes. Astrophys. J. 489, 992 (1997)

    Article  Google Scholar 

  3. Carpenter, D., Zhao, L., Lepri, S.T., Han, H.: Characterizing in-situ solar wind observations using clustering methods. In: Han, H., Baker, E. (eds.) SDSC 2022. CCIS, vol. 1725, pp. 125–138. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23387-6_9

    Chapter  Google Scholar 

  4. Cranmer, S.R.: Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229 (2002)

    Article  Google Scholar 

  5. Crooker, N.U., Antiochos, S.K., Zhao, X., Neugebauer, M.: Global network of slow solar wind. J. Geophys. Res. 117, A04104 (2012). https://doi.org/10.1029/2011JA017236

    Article  Google Scholar 

  6. Garrard, T., Davis, A., Hammond, J., et al.: The ACE science center. Space Sci. Rev. 86, 649–663 (1998)

    Article  Google Scholar 

  7. Gibson, S.E., Fan, Y.: The partial expulsion of a magnetic flux rope. Astrophys. J. 637(1), L65–L68 (2006)

    Article  Google Scholar 

  8. Gibson, S.E., Fan, Y., Török, T., Kliem, B.: The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after CMEs. Space Sci. Rev. 124(1–4), 131–144 (2006)

    Google Scholar 

  9. Gloeckler, G., Cain, J., Ipavich, F.M., et al.: Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497 (1998)

    Article  Google Scholar 

  10. Han, H., Wentian, L., Wang, J., Qin, G., Qin, X.: Enhance explainability of manifold learning. Neurocomputing 500, 877–895 (2022)

    Article  Google Scholar 

  11. Ko, Y.-K., Raymond, J.C., Zurbuchen, T.H., et al.: Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275 (2006)

    Article  Google Scholar 

  12. Lepri, S.T., Zurbuchen, T.H.: Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109, A01112 (2004). https://doi.org/10.1029/2003JA009954

    Article  Google Scholar 

  13. Liu, S., Su, J.T.: Multi-channel observations of plasma outflows and the associated small-scale magnetic field cancellations on the edges of an active region. Astrophys. Space Sci. 351, 417 (2014)

    Article  Google Scholar 

  14. McComas, D., Bame, S., Barker, P., et al.: Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563–612 (1998)

    Article  Google Scholar 

  15. Roberts, D.A., et al.: Objectively determining states of the solar wind using machine learning. ApJ 889, 153 (2020)

    Article  Google Scholar 

  16. Smith, C., L’Heureux, J., Ness, N., et al.: The ACE magnetic fields experiment. Space Sci. Rev. 86, 613–632 (1998)

    Article  Google Scholar 

  17. Stakhiv, M., Landi, E., Lepri, S.T., Oran, R., Zurbuchen, T.H.: On the origin of mid-latitude fast wind: challenging the two-state solar wind paradigm. Astrophys. J. 801, 100 (2015)

    Article  Google Scholar 

  18. Wang, Y.-M., Ko, Y.-K.: Observations of slow solar wind from equatorial coronal holes. Apj 880, 146 (2019)

    Article  Google Scholar 

  19. Wang, Y.-M., Grappin, R., Robbrecht, E., et al.: On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182 (2012)

    Article  Google Scholar 

  20. Wang, Y.-M., Ko, Y.-K., Grappin, R.: Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760 (2009)

    Article  Google Scholar 

  21. Zhao, L., Landi, E., Zurbuchen, T.H., Fisk, L.A., Lepri, S.T.: The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycles 23 to 24. Astrophys. J. 793, 44, 8 pp (2014). https://doi.org/10.1088/0004-637X/793/1/44

  22. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104 (2009)

    Article  Google Scholar 

  23. Zhao, L., Gibson, S.E., Fisk, L.A.: Association of solar wind proton flux extremes with pseudostreamers. J. Geophys. Res. Space Phys. 118, 2834–2841 (2013)

    Article  Google Scholar 

  24. Zhao, L., et al.: On the relation between the in-situ properties and the coronal sources of the solar wind. Astrophys. J. 846(2), 135 (2017)

    Article  Google Scholar 

  25. Zhao, L., et al.: An anomalous composition in slow solar wind as a signature of magnetic reconnection in its source region. ApJS 228, 1 (2017)

    Article  Google Scholar 

  26. Zirker, J.B.: Coronal holes and high-speed wind streams. Rev. Geophys. Space Phys. 15, 257 (1977)

    Article  Google Scholar 

  27. Zurbuchen, T.H., Fisk, L.A., Gloeckler, G., von Steiger, R.: The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29(9) (2002). https://doi.org/10.1029/2001GL013946

  28. Han, H., Li, D., Liu, W., Zhang, H., Wang, J.: High dimensional mislabeled learning. Neurocomputing 573, 127218 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

 The work of D.C. is supported by NASA grant 80NSSC22K1015. L.Z. is supported by NASA Grants 80NSSC21K0579, 80NSSC22K1015, NSF SHINE grant 2229138, and NSF Early Career grant 2237435. H.H is supported by the McCollum endowed chair startup fund of Baylor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carpenter, D.T., Han, H., Zhao, L. (2024). Dimension Reduction Stacking for Deep Solar Wind Clustering. In: Han, H., Baker, E. (eds) Next Generation Data Science. SDSC 2023. Communications in Computer and Information Science, vol 2113. Springer, Cham. https://doi.org/10.1007/978-3-031-61816-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61816-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61815-4

  • Online ISBN: 978-3-031-61816-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics