Abstract
When engaging in strategic decision-making, we are frequently confronted with overwhelming information and data. The situation can be further complicated when certain pieces of evidence contradict each other or become paradoxical. The primary challenge is how to determine which information can be trusted when we adopt Artificial Intelligence (AI) systems for decision-making. This issue is known as “deciding what to decide” or Trustworthy AI. However, the AI system itself is often considered an opaque “black box”. We propose a new approach to address this issue by introducing a novel framework of Trustworthy AI (TAI) encompassing three crucial components of AI: representation space, loss function, and optimizer. Each component is loosely coupled with four TAI properties. Altogether, the framework consists of twelve TAI properties. We aim to use this framework to conduct the TAI experiments by quantitive and qualitative research methods to satisfy TAI properties for the decision-making context. The framework allows us to formulate an optimal prediction model trained by the given dataset for applying the strategic investment decision of credit default swaps (CDS) in the technology sector. Finally, we provide our view of the future direction of TAI research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flores, F., Solomon, C.: Creating Trust1. Bus. Ethics Q. 8(2), 205–232 (1998). https://doi.org/10.2307/3857326
Cawkwell, G.: Thucydides and the Peloponnesian War. Routledge, pp. 20–39 (2006). https://doi.org/10.4324/9780203129708
Kissinger, H.A., Schmidt, E., Huttenlocher, D.: The Age of AI: and our Human Future. Hachette UK (2021)
Wing, M.: Trustworthy AI. Commun. ACM 64(10), 64–71 (2021) https://doi.org/10.1145/3448248
Siebert, L., et al.: Meaningful human control: actionable properties for AI system development. AI Ethics, 1–15 (2022). https://doi.org/10.1007/s43681-022-00167-3
Eryurek, E., et al.: Data Governance: The Definitive Guide. People, Processes, and Tools to Operationalize Data Trustworthiness O’Reilly Media, Inc., Gravenstein Highway North, Sebastopol. CA USA. (2021)
Li, B., et al.: Trustworthy AI: from principles to practices. ACM Comput. Surv. 55(9), 1–46 (2023). https://doi.org/10.1145/3555803
Page, E.: The model thinker: What you need to know to make data work for you. Basic Books (2018). https://doi.org/10.1080/00031305.2021.1907993
Kuhn, M., Julia, S.: Tidy Modeling With R: A Framework for Modeling in the Tidyverse (2021). https://www.tmwr.org/
Wu, C., et al.: Cloud computing market segmentation. In: ICSOFT, pp. 922–931 (2018)
Domingos, P.: The master algorithm: how the quest for the ultimate learning machine will remake our world. Basic Books (2015)
Stulz, M.: Credit default swaps and the credit crisis. J. Econ. Perspect. 24(1), 73–92 (2010). https://doi.org/10.2139/ssrn.1475323
Breiman, L.: Classification and Regression Trees. Routledge (2017).https://doi.org/10.1201/9781315139470
Lundberg, M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9
Mayr, A., et al.: The evolution of boosting algorithms. Meth. Inf. Med. 53(06), 419–427 (2014). https://doi.org/10.48550/arXiv.1403.1452
He, Z., et al.: Gradient boosting machine: a survey (2019). arXiv:1908.06951. https://doi.org/10.48550/arXiv.1908.06951
Surowiecki, J.: The wisdom of crowds. Anchor (2005)
Friedman, H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–232 (2001). https://doi.org/10.1016/S0167-9473(01)00065-2
Wu, C., Bouvry, P.: Strategic decisions: survey, taxonomy, and future directions from artificial intelligence perspective. ACM Comput. Surv. 55(12), 1–30 (2023). https://doi.org/10.1145/3571807
Shin, D.: User perceptions of algorithmic decisions in the personalized AI system: perceptual evaluation of fairness, accountability, transparency, and explainability. J. Broadcasting Electron. Media 64(4), 541–565 (2020). https://doi.org/10.1080/08838151.2020.1843357
Verma, S.: Counterfactual explanations for machine learning: A review. arXiv preprint arXiv:2010.10596 (2020). https://doi.org/10.48550/arXiv.2010.10596
Mothilal, R.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020). https://doi.org/10.1145/3351095.3372850
Mehrabi, N., et al.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021). https://doi.org/10.48550/arXiv.1908.09635
Das, A., Paul, R.: Opportunities and challenges in explainable artificial intelligence (xai): A survey (2020). https://doi.org/10.48550/arXiv.2006.11371
Arrieta, B., et al.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI Inform. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012
Bodria, F., et al.: Benchmarking and survey of explanation methods for black box models. arXiv:2102.13076 (2021). https://doi.org/10.48550/arXiv.2102.13076
Angelov, P., et al.: Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Rev. Data Min. Knowl. Discov. 11(5), e1424 (2021). https://doi.org/10.1002/widm.1424
Pedreschi, D., et al.: Meaningful explanations of black box AI decision systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019). https://doi.org/10.1609/aaai.v33i01.33019780
Jesus, S., et al.: How can I choose an explainer? an application-grounded evaluation of post-hoc explanations. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2021). https://doi.org/10.48550/arXiv.2101.08758
Adadi, A., Mohammed B.: Peeking inside the black box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018) https://doi.org/10.1109/ACCESS.2018.2870052
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007
Rudin, C.: Stop explaining black-box machine learning models for high-stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x
Burns, C.: Interpreting black box models via hypothesis testing. In: Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference. (2020). https://doi.org/10.48550/arXiv.1904.00045
Gilpin, H., et al.: Explaining explanations: An overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE (2018). https://doi.org/10.1109/DSAA.2018.00018
Sharma, S., et al.: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and Fairness of artificial intelligence models. arXiv preprint arXiv:1905.07857 (2019). https://doi.org/10.48550/arXiv.1905.07857
Wu, C., et al.: Strategic Predictions and Explanations By Machine Learning (2023)
https://www.kaggle.com/datasets/debashish311601/credit-default-swap-cds-prices
Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29(2), 449–470 (1974)
Das, R., et al.: Accounting-based versus market-based cross-sectional models of CDS spreads. J. Bank. Finance 33(4), 719–730 (2019)
Duan, J., et al.: Multiperiod corporate default prediction: a forward intensity approach. J. Econometrics 170(1), 191–209 (2012)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)
Liu, Y., et al.: A survey of visual transformers. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.48550/arXiv.2111.06091
Radford, A., et al.: Improving language understanding by generative pre-training. OpenAI blog (2018)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI blog (2019)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. (2020)
Wu, H., et al.: Timesnet: Temporal 2d-variation modelling for general time series analysis. arXiv preprint arXiv:2210.02186, (2022)
Zhang, Y., Yan, Y.: Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting. In: The Eleventh International Conference on Learning Representations, (2022)
Nie, Y., et al.: A time series is worth 64 words: Long-term forecasting with transformers, arXiv preprint arXiv:2211.14730 (2022)
Lenat, D., Marcus, G.: Getting from Generative AI to Trustworthy AI: What LLMs might learn from Cyc. arXiv preprint (2023), https://doi.org/10.48550/arXiv.2308.04445
Kahneman, D.: Thinking fast and slow (2017)
Jobs, S.: Commencement Address. Stanford University, In Presented at (2005)
Hull, J., Alan, W.: The valuation of credit default swap options. J. Deriv. 10(3), 40–50 (2003)
Chai, T., Draxler, R.: Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci. Model Dev. 307(3), 1247–50 (2014)
Acknowledgment
This research was funded by the Luxembourg National Research Fund (FNR), grant ID C21/IS/16221483/CBD and grant ID 15748747. For open access, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, C., Li, YF., Li, J., Xu, J., Bouvry, P. (2024). Trustworthy AI: Deciding What to Decide. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-031-62281-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-62281-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62280-9
Online ISBN: 978-3-031-62281-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)