Skip to main content

Trustworthy AI: Deciding What to Decide

A Strategic Decision on Credit Default Swaps Investment

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1016))

Included in the following conference series:

  • 324 Accesses

Abstract

When engaging in strategic decision-making, we are frequently confronted with overwhelming information and data. The situation can be further complicated when certain pieces of evidence contradict each other or become paradoxical. The primary challenge is how to determine which information can be trusted when we adopt Artificial Intelligence (AI) systems for decision-making. This issue is known as “deciding what to decide” or Trustworthy AI. However, the AI system itself is often considered an opaque “black box”. We propose a new approach to address this issue by introducing a novel framework of Trustworthy AI (TAI) encompassing three crucial components of AI: representation space, loss function, and optimizer. Each component is loosely coupled with four TAI properties. Altogether, the framework consists of twelve TAI properties. We aim to use this framework to conduct the TAI experiments by quantitive and qualitative research methods to satisfy TAI properties for the decision-making context. The framework allows us to formulate an optimal prediction model trained by the given dataset for applying the strategic investment decision of credit default swaps (CDS) in the technology sector. Finally, we provide our view of the future direction of TAI research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flores, F., Solomon, C.: Creating Trust1. Bus. Ethics Q. 8(2), 205–232 (1998). https://doi.org/10.2307/3857326

    Article  Google Scholar 

  2. Cawkwell, G.: Thucydides and the Peloponnesian War. Routledge, pp. 20–39 (2006). https://doi.org/10.4324/9780203129708

  3. Kissinger, H.A., Schmidt, E., Huttenlocher, D.: The Age of AI: and our Human Future. Hachette UK (2021)

    Google Scholar 

  4. Wing, M.: Trustworthy AI. Commun. ACM 64(10), 64–71 (2021) https://doi.org/10.1145/3448248

  5. Siebert, L., et al.: Meaningful human control: actionable properties for AI system development. AI Ethics, 1–15 (2022). https://doi.org/10.1007/s43681-022-00167-3

  6. Eryurek, E., et al.: Data Governance: The Definitive Guide. People, Processes, and Tools to Operationalize Data Trustworthiness O’Reilly Media, Inc., Gravenstein Highway North, Sebastopol. CA USA. (2021)

    Google Scholar 

  7. Li, B., et al.: Trustworthy AI: from principles to practices. ACM Comput. Surv. 55(9), 1–46 (2023). https://doi.org/10.1145/3555803

  8. Page, E.: The model thinker: What you need to know to make data work for you. Basic Books (2018). https://doi.org/10.1080/00031305.2021.1907993

  9. Kuhn, M., Julia, S.: Tidy Modeling With R: A Framework for Modeling in the Tidyverse (2021). https://www.tmwr.org/

  10. Wu, C., et al.: Cloud computing market segmentation. In: ICSOFT, pp. 922–931 (2018)

    Google Scholar 

  11. Domingos, P.: The master algorithm: how the quest for the ultimate learning machine will remake our world. Basic Books (2015)

    Google Scholar 

  12. Stulz, M.: Credit default swaps and the credit crisis. J. Econ. Perspect. 24(1), 73–92 (2010). https://doi.org/10.2139/ssrn.1475323

  13. Breiman, L.: Classification and Regression Trees. Routledge (2017).https://doi.org/10.1201/9781315139470

  14. Lundberg, M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9

  15. Mayr, A., et al.: The evolution of boosting algorithms. Meth. Inf. Med. 53(06), 419–427 (2014). https://doi.org/10.48550/arXiv.1403.1452

  16. He, Z., et al.: Gradient boosting machine: a survey (2019). arXiv:1908.06951. https://doi.org/10.48550/arXiv.1908.06951

  17. Surowiecki, J.: The wisdom of crowds. Anchor (2005)

    Google Scholar 

  18. Friedman, H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–232 (2001). https://doi.org/10.1016/S0167-9473(01)00065-2

  19. Wu, C., Bouvry, P.: Strategic decisions: survey, taxonomy, and future directions from artificial intelligence perspective. ACM Comput. Surv. 55(12), 1–30 (2023). https://doi.org/10.1145/3571807

    Article  Google Scholar 

  20. Shin, D.: User perceptions of algorithmic decisions in the personalized AI system: perceptual evaluation of fairness, accountability, transparency, and explainability. J. Broadcasting Electron. Media 64(4), 541–565 (2020). https://doi.org/10.1080/08838151.2020.1843357

  21. Verma, S.: Counterfactual explanations for machine learning: A review. arXiv preprint arXiv:2010.10596 (2020). https://doi.org/10.48550/arXiv.2010.10596

  22. Mothilal, R.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020). https://doi.org/10.1145/3351095.3372850

  23. Mehrabi, N., et al.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021). https://doi.org/10.48550/arXiv.1908.09635

  24. Das, A., Paul, R.: Opportunities and challenges in explainable artificial intelligence (xai): A survey (2020). https://doi.org/10.48550/arXiv.2006.11371

  25. Arrieta, B., et al.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI Inform. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

  26. Bodria, F., et al.: Benchmarking and survey of explanation methods for black box models. arXiv:2102.13076 (2021). https://doi.org/10.48550/arXiv.2102.13076

  27. Angelov, P., et al.: Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Rev. Data Min. Knowl. Discov. 11(5), e1424 (2021). https://doi.org/10.1002/widm.1424

    Article  Google Scholar 

  28. Pedreschi, D., et al.: Meaningful explanations of black box AI decision systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01 (2019). https://doi.org/10.1609/aaai.v33i01.33019780

  29. Jesus, S., et al.: How can I choose an explainer? an application-grounded evaluation of post-hoc explanations. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2021). https://doi.org/10.48550/arXiv.2101.08758

  30. Adadi, A., Mohammed B.: Peeking inside the black box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018) https://doi.org/10.1109/ACCESS.2018.2870052

  31. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

    Article  MathSciNet  Google Scholar 

  32. Rudin, C.: Stop explaining black-box machine learning models for high-stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

  33. Burns, C.: Interpreting black box models via hypothesis testing. In: Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference. (2020). https://doi.org/10.48550/arXiv.1904.00045

  34. Gilpin, H., et al.: Explaining explanations: An overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE (2018). https://doi.org/10.1109/DSAA.2018.00018

  35. Sharma, S., et al.: Certifai: Counterfactual explanations for robustness, transparency, interpretability, and Fairness of artificial intelligence models. arXiv preprint arXiv:1905.07857 (2019). https://doi.org/10.48550/arXiv.1905.07857

  36. Wu, C., et al.: Strategic Predictions and Explanations By Machine Learning (2023)

    Google Scholar 

  37. https://www.kaggle.com/datasets/debashish311601/credit-default-swap-cds-prices

  38. Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29(2), 449–470 (1974)

    Google Scholar 

  39. Das, R., et al.: Accounting-based versus market-based cross-sectional models of CDS spreads. J. Bank. Finance 33(4), 719–730 (2019)

    Article  Google Scholar 

  40. Duan, J., et al.: Multiperiod corporate default prediction: a forward intensity approach. J. Econometrics 170(1), 191–209 (2012)

    Article  MathSciNet  Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)

    Google Scholar 

  42. Liu, Y., et al.: A survey of visual transformers. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.48550/arXiv.2111.06091

  43. Radford, A., et al.: Improving language understanding by generative pre-training. OpenAI blog (2018)

    Google Scholar 

  44. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI blog (2019)

    Google Scholar 

  45. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. (2020)

    Google Scholar 

  46. Wu, H., et al.: Timesnet: Temporal 2d-variation modelling for general time series analysis. arXiv preprint arXiv:2210.02186, (2022)

  47. Zhang, Y., Yan, Y.: Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting. In: The Eleventh International Conference on Learning Representations, (2022)

    Google Scholar 

  48. Nie, Y., et al.: A time series is worth 64 words: Long-term forecasting with transformers, arXiv preprint arXiv:2211.14730 (2022)

  49. Lenat, D., Marcus, G.: Getting from Generative AI to Trustworthy AI: What LLMs might learn from Cyc. arXiv preprint (2023), https://doi.org/10.48550/arXiv.2308.04445

  50. Kahneman, D.: Thinking fast and slow (2017)

    Google Scholar 

  51. Jobs, S.: Commencement Address. Stanford University, In Presented at (2005)

    Google Scholar 

  52. Hull, J., Alan, W.: The valuation of credit default swap options. J. Deriv. 10(3), 40–50 (2003)

    Article  Google Scholar 

  53. Chai, T., Draxler, R.: Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geosci. Model Dev. 307(3), 1247–50 (2014)

    Google Scholar 

Download references

Acknowledgment

This research was funded by the Luxembourg National Research Fund (FNR), grant ID C21/IS/16221483/CBD and grant ID 15748747. For open access, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caesar Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Li, YF., Li, J., Xu, J., Bouvry, P. (2024). Trustworthy AI: Deciding What to Decide. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-031-62281-6_8

Download citation

Publish with us

Policies and ethics