Abstract
This study examines the use of subjective and sentimentally charged language in crowd-sourced articles by focusing on time and how articles in environments like Wikipedia tend to evolve as edits are made by multiple contributors. More specifically, we measure linguistic subjectivity (the systematic, asymmetrical use of language) using Mean Abstraction Level, an established subjectivity measure, and polarity (the use of positively or negatively sentimentally charged words) through time. For the latest case, we introduce a new measure called Polarity Density. We focus on Wikipedia biographies and their evolution over time and we perform a detailed analysis per gender and per personality category. Our empirical evaluation provides evidence of increased subjectivity in female biographies as per personality category and per gender, while the same also occurs when considering sentimental charge over time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Agathangelou, P., Katakis, I., Koutoulakis, I., Kokkoras, F., Gunopulos, D.: Learning patterns for discovering domain-oriented opinion words. Knowl. Inf. Syst. 55(1), 45–77 (2018)
Badache, I., Chifu, A.G., Fournier, S.: Unsupervised and supervised methods to estimate temporal-aware contradictions in online course reviews. Mathematics 10(5), 809 (2022)
Chen, J., Ren, Y., Riedl, J.: The effects of diversity on group productivity and member withdrawal in online volunteer groups. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 821–830 (2010)
Chhabra, A., Iyengar, S.R.S.: How does knowledge come by? CoRR abs/1705.06946 (2017)
Chhabra, A., Kaur, R., Iyengar, S.: Dynamics of edit war sequences in Wikipedia. In: Proceedings of the 16th International Symposium on Open Collaboration, pp. 1–10 (2020)
Couto, L., Teixeira Lopes, C.: Equal opportunities in the access to quality online health information? A multi-lingual study on Wikipedia. In: Proceedings of the 17th International Symposium on Open Collaboration, pp. 1–13 (2021)
Damadi, M.S., Davoust, A.: Fairness in socio-technical systems: a case study of Wikipedia. arXiv preprint arXiv:2302.07787 (2023)
Ferran-Ferrer, N., Miquel-Ribé, M., Meneses, J., Minguillón, J.: The gender perspective in Wikipedia: a content and participation challenge. In: Companion Proceedings of the Web Conference 2022, pp. 1319–1323 (2022)
Giles, J.: Internet encyclopaedias go head to head. Nature 438, 900–901 (2005)
Hube, C., Fetahu, B.: Detecting biased statements in Wikipedia. In: Companion Proceedings of the Web Conference 2018, pp. 1779–1786 (2018)
Kenrick, D.T.: Evolutionary theory and human social behavior. In: Handbook of Theories of Social Psychology, vol. 1, pp. 11–31 (2012)
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)
Madanagopal, K., Caverlee, J.: Improving linguistic bias detection in Wikipedia using cross-domain adaptive pre-training. In: Companion Proceedings of the Web Conference 2022, pp. 1301–1309 (2022)
Mannix, E., Neale, M.A.: What differences make a difference? The promise and reality of diverse teams in organizations. Psychol. Sci. Public Interest 6(2), 31–55 (2005)
Morris-O’Connor, D., Strotmann, A., Zhao, D.: Editorial behaviors for biasing Wikipedia articles. Proc. Assoc. Inf. Sci. Technol. 59(1), 226–234 (2022)
Nandwani, P., Verma, R.: A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 11(1), 81 (2021)
Pryzant, R., Martinez, R.D., Dass, N., Kurohashi, S., Jurafsky, D., Yang, D.: Automatically neutralizing subjective bias in text. In: AAAI (2020)
Rajagopal, D., Zhang, X., Gamon, M., Jauhar, S.K., Yang, D., Hovy, E.: One document, many revisions: a dataset for classification and description of edit intents. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 5517–5524 (2022)
Ramírez-Ordóñez, D., Ferran-Ferrer, N., Meneses, J.: Wikipedia and gender: the deleted, the marked, and the unpolluted biographies (2022)
Semin, G.R., Fiedler, K.: The linguistic category model, its bases, applications and range. Eur. Rev. Soc. Psychol. 2(1), 1–30 (1991)
Shi, F., Teplitskiy, M., Duede, E., Evans, J.A.: The wisdom of polarized crowds. Nat. Hum. Behav. 3(4), 329–336 (2019)
Viégas, F.B., Wattenberg, M., Dave, K.: Studying cooperation and conflict between authors with history flow visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 575–582 (2004)
Wigboldus, D.H., Spears, R., Semin, G.R.: When do we communicate stereotypes? Influence of the social context on the linguistic expectancy bias. Group Process. Intergroup Relat. 8(3), 215–230 (2005)
Wilkinson, D.M., Huberman, B.A.: Cooperation and quality in Wikipedia. In: Proceedings of the 2007 International Symposium on Wikis, pp. 157–164 (2007)
Zheng, X., Chen, J., Yan, E., Ni, C.: Gender and country biases in Wikipedia citations to scholarly publications. J. Am. Soc. Inf. Sci. 74(2), 219–233 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Romantzis, C., Karakasidis, A., Mathioudis, E., Katakis, I., Agathangelou, P., Otterbacher, J. (2024). Subjectivity, Polarity and the Aspect of Time in the Evolution of Crowd-Sourced Biographies. In: Stefanidis, K., Systä, K., Matera, M., Heil, S., Kondylakis, H., Quintarelli, E. (eds) Web Engineering. ICWE 2024. Lecture Notes in Computer Science, vol 14629. Springer, Cham. https://doi.org/10.1007/978-3-031-62362-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-62362-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62361-5
Online ISBN: 978-3-031-62362-2
eBook Packages: Computer ScienceComputer Science (R0)