Abstract
Tag-aware recommender system leverages user-annotated historical data to enhance the understanding of user preferences and web service/item features, attracting widespread attention in academia and industry. However, most existing tag-aware recommender systems cannot effectively model the relationships among users, items, and tags, disrupting their comprehension of user preferences, item attributes, and tag semantics, thereby affecting recommendation performance. Therefore, we propose a tag-aware recommendation model based on attention mechanism and disentangled graph neural network (AM-DGNN). Specifically, we first construct three bipartite graphs describing user-tag, item-tag, and user-item relationships based on user-annotated historical data. Then, we utilize the multi-head attention mechanism on the first two relational graphs to integrate semantic information from tags into user and item representations, aiming to enhance the model’s understanding of user preferences and item features. Subsequently, on the user-item relational graph, we refine user and item feature representations to form intention subgraphs, describing the relationships between users and items under different intentions. Ultimately, we obtain intention-disentangled user and item representations to achieve the recommendation objective. Extensive experiments on two datasets demonstrate that the proposed model outperforms the baselines in tag-aware recommendation tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, J., Ren, S., Ding, F.: HTRM: a hybrid neural network algorithm based on tag-aware. In: IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 160–165. IEEE (2021)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Chen, B., et al.: TGCN: tag graph convolutional network for tag-aware recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 155–164 (2020)
Chen, W., et al.: Semi-supervised user profiling with heterogeneous graph attention networks. In: IJCAI, vol. 19, pp. 2116–2122 (2019)
Gao, C., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recommender Syst. (2022)
He, M., Han, T., Ding, T.: Multilevel feature interaction learning for session-based recommendation via graph neural networks. In: Di Noia, T., Ko, I.Y., Schedl, M., Ardito, C. (eds.) ICWE 2022. LNCS, vol. 13362, pp. 31–46. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09917-5_3
He, M., Huang, Z., Wen, H.: MPIA: multiple preferences with item attributes for graph convolutional collaborative filtering. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 225–239. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_18
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)
Huang, R., Han, C., Cui, L.: Tag-aware attentional graph neural networks for personalized tag recommendation. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)
Huang, R., Wang, N., Han, C., Yu, F., Cui, L.: TNAM: a tag-aware neural attention model for top-n recommendation. Neurocomputing 385, 1–12 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, Q., Zhou, Q., Chen, W., Zhao, L.: User identity linkage via graph convolutional network across location-based social networks. In: Garrigós, I., Murillo Rodríguez, J.M., Wimmer, M. (eds.) ICWE 2023. LNCS, vol. 13893, pp. 158–173. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34444-2_12
Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: International Conference on Machine Learning, pp. 4212–4221. PMLR (2019)
Xu, P., Liu, H., Liu, B., Jing, L., Yu, J.: Survey of tag recommendation methods. J. Softw. 33(4), 1244–1266 (2021)
Xing, Q., Liu, L., Liu, Y., Zhang, M., Ma, S.: Study on user tags in Weibo. J. Softw. 26(7), 1626–1637 (2015)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)
Shoja, B.M., Tabrizi, N.: Tags-aware recommender systems: a systematic review. In: IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering, pp. 11–18. IEEE (2019)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Wang, B., Xu, H., Li, C., Li, Y., Wang, M.: TKGAT: graph attention network for knowledge-enhanced tag-aware recommendation system. Knowl.-Based Syst. 257, 109903 (2022)
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)
Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021, pp. 878–887 (2021)
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)
Wang, Y., Tang, S., Lei, Y., Song, W., Wang, S., Zhang, M.: DisenHAN: disentangled heterogeneous graph attention network for recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1605–1614 (2020)
Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey. ACM Comput. Surv. 55(5), 1–37 (2022)
Acknowledgments
This research was supported by the National Natural Science Foundation of China under Grant No. 62372145 and 62202131.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yao, H., Yu, D., Wang, D., Zhang, H., Song, S., Li, J. (2024). Tag-Aware Recommendation Based on Attention Mechanism and Disentangled Graph Neural Network. In: Stefanidis, K., Systä, K., Matera, M., Heil, S., Kondylakis, H., Quintarelli, E. (eds) Web Engineering. ICWE 2024. Lecture Notes in Computer Science, vol 14629. Springer, Cham. https://doi.org/10.1007/978-3-031-62362-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-62362-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62361-5
Online ISBN: 978-3-031-62362-2
eBook Packages: Computer ScienceComputer Science (R0)