Skip to main content

Tag-Aware Recommendation Based on Attention Mechanism and Disentangled Graph Neural Network

  • Conference paper
  • First Online:
Web Engineering (ICWE 2024)

Abstract

Tag-aware recommender system leverages user-annotated historical data to enhance the understanding of user preferences and web service/item features, attracting widespread attention in academia and industry. However, most existing tag-aware recommender systems cannot effectively model the relationships among users, items, and tags, disrupting their comprehension of user preferences, item attributes, and tag semantics, thereby affecting recommendation performance. Therefore, we propose a tag-aware recommendation model based on attention mechanism and disentangled graph neural network (AM-DGNN). Specifically, we first construct three bipartite graphs describing user-tag, item-tag, and user-item relationships based on user-annotated historical data. Then, we utilize the multi-head attention mechanism on the first two relational graphs to integrate semantic information from tags into user and item representations, aiming to enhance the model’s understanding of user preferences and item features. Subsequently, on the user-item relational graph, we refine user and item feature representations to form intention subgraphs, describing the relationships between users and items under different intentions. Ultimately, we obtain intention-disentangled user and item representations to achieve the recommendation objective. Extensive experiments on two datasets demonstrate that the proposed model outperforms the baselines in tag-aware recommendation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.last.fm.com.

  2. 2.

    https://github.com/HduDBSI/AM-DGNN.

References

  1. Bao, J., Ren, S., Ding, F.: HTRM: a hybrid neural network algorithm based on tag-aware. In: IEEE International Conference on Smart Internet of Things (SmartIoT), pp. 160–165. IEEE (2021)

    Google Scholar 

  2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  3. Chen, B., et al.: TGCN: tag graph convolutional network for tag-aware recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 155–164 (2020)

    Google Scholar 

  4. Chen, W., et al.: Semi-supervised user profiling with heterogeneous graph attention networks. In: IJCAI, vol. 19, pp. 2116–2122 (2019)

    Google Scholar 

  5. Gao, C., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recommender Syst. (2022)

    Google Scholar 

  6. He, M., Han, T., Ding, T.: Multilevel feature interaction learning for session-based recommendation via graph neural networks. In: Di Noia, T., Ko, I.Y., Schedl, M., Ardito, C. (eds.) ICWE 2022. LNCS, vol. 13362, pp. 31–46. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09917-5_3

    Chapter  Google Scholar 

  7. He, M., Huang, Z., Wen, H.: MPIA: multiple preferences with item attributes for graph convolutional collaborative filtering. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 225–239. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_18

    Chapter  Google Scholar 

  8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  9. Huang, R., Han, C., Cui, L.: Tag-aware attentional graph neural networks for personalized tag recommendation. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  10. Huang, R., Wang, N., Han, C., Yu, F., Cui, L.: TNAM: a tag-aware neural attention model for top-n recommendation. Neurocomputing 385, 1–12 (2020)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Li, Q., Zhou, Q., Chen, W., Zhao, L.: User identity linkage via graph convolutional network across location-based social networks. In: Garrigós, I., Murillo Rodríguez, J.M., Wimmer, M. (eds.) ICWE 2023. LNCS, vol. 13893, pp. 158–173. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34444-2_12

    Chapter  Google Scholar 

  13. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: International Conference on Machine Learning, pp. 4212–4221. PMLR (2019)

    Google Scholar 

  14. Xu, P., Liu, H., Liu, B., Jing, L., Yu, J.: Survey of tag recommendation methods. J. Softw. 33(4), 1244–1266 (2021)

    Google Scholar 

  15. Xing, Q., Liu, L., Liu, Y., Zhang, M., Ma, S.: Study on user tags in Weibo. J. Softw. 26(7), 1626–1637 (2015)

    Google Scholar 

  16. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)

    Google Scholar 

  17. Shoja, B.M., Tabrizi, N.: Tags-aware recommender systems: a systematic review. In: IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering, pp. 11–18. IEEE (2019)

    Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  19. Wang, B., Xu, H., Li, C., Li, Y., Wang, M.: TKGAT: graph attention network for knowledge-enhanced tag-aware recommendation system. Knowl.-Based Syst. 257, 109903 (2022)

    Article  Google Scholar 

  20. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

    Google Scholar 

  21. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  22. Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021, pp. 878–887 (2021)

    Google Scholar 

  23. Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1001–1010 (2020)

    Google Scholar 

  24. Wang, Y., Tang, S., Lei, Y., Song, W., Wang, S., Zhang, M.: DisenHAN: disentangled heterogeneous graph attention network for recommendation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1605–1614 (2020)

    Google Scholar 

  25. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey. ACM Comput. Surv. 55(5), 1–37 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant No. 62372145 and 62202131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, H., Yu, D., Wang, D., Zhang, H., Song, S., Li, J. (2024). Tag-Aware Recommendation Based on Attention Mechanism and Disentangled Graph Neural Network. In: Stefanidis, K., Systä, K., Matera, M., Heil, S., Kondylakis, H., Quintarelli, E. (eds) Web Engineering. ICWE 2024. Lecture Notes in Computer Science, vol 14629. Springer, Cham. https://doi.org/10.1007/978-3-031-62362-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62362-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62361-5

  • Online ISBN: 978-3-031-62362-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics