Skip to main content

Discrete-Time Replicator Equations on Parallel Neural Networks

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2024)

Abstract

In this paper, we are aiming to propose a novel mathematical model that studies the dynamics of synaptic damage in terms of concentrations of toxic neuropeptides (neurotransmitters) during neurotransmission processes. Our objective is to employ “Wardrop’s first and second principles” within a neural network of the brain. Complete manifestations of Wardrop’s first and second principles within a neural network of the brain are presented through the introduction of two novel concepts: neuropeptide’s (neurotransmitter’s) equilibrium and synapses optimum. In the context of a neural network within the brain, an analogue of the price of anarchy is the price of cognition which is the most unfavorable ratio between the overall impairment caused by toxic neuropeptide’s (neurotransmitter’s) equilibrium in comparison to the optimal state of synapses (synapses optimum). Finally, we also propose an iterative algorithm (neurodynamics) in which the synapses optimum is eventually established during the neurotransmission process. We envision that this mathematical model can serve as a source of motivation to instigate novel experimental and computational research avenues in the fields of artificial neural networks and contemporary neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Della Sala, S.: Encyclopedia of Behavioral Neuroscience, 2nd Ed., Elsevier Science, (2021)

    Google Scholar 

  2. Fauth, M., Wörgötter, F., Tetzlaff, C.: The formation of multi-synaptic connections by the interaction of synaptic and structural plasticity and their functional consequences. PLoS Comput. Biol. 11(1), 1–29 (2015)

    Article  Google Scholar 

  3. Reddy, P.H.: A critical assessment of research on neurotransmitters in Alzheimer’s disease. J. Alzheimers Dis. 57(4), 969–974 (2017)

    Article  Google Scholar 

  4. Rajmohan, R., Reddy, P.H.: Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis. 57(4), 975–999 (2017)

    Article  Google Scholar 

  5. Jha, S.K., et al.: Stress-induced synaptic dysfunction and neurotransmitter release in Alzheimer’s disease: can neurotransmitters and neuromodulators be potential therapeutic targets? J. Alzheimers Dis. 57(4), 1017–1039 (2017)

    Article  Google Scholar 

  6. Wang, R., Reddy, P.H.: Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1041–1048 (2017)

    Article  Google Scholar 

  7. Kandimalla, R., Reddy, P.H.: Therapeutics of neurotransmitters in Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1049–1069 (2017)

    Article  Google Scholar 

  8. Guo, L., Tian, J., Du. H.: Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis. 57(4) 1071–1086 (2017)

    Google Scholar 

  9. Cai, Q., Tammineni, P.: Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1087–1103 (2017)

    Article  Google Scholar 

  10. Tönnies, E., Trushina, E.: Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1105–1121 (2017)

    Article  Google Scholar 

  11. Jiang, S., Bhaskar, K.: Dynamics of the complement, cytokine, and chemokine systems in the regulation of synaptic function and dysfunction relevant to Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1123–1135 (2017)

    Article  Google Scholar 

  12. Chen, K., Weng, Y., Hosseini, A.A., Dening, T., Zuo, G., Zhang, Y.: A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis. Neural Netw. 169, 442–452 (2024)

    Article  Google Scholar 

  13. Park, S., Hong, Ch.H., Lee, D-Gi., Park, K., Shin, H.: Prospective classification of Alzheimer’s disease conversion from mild cognitive impairment. Neural Networks 164, 335–344 (2023)

    Google Scholar 

  14. Ho, Ng-H., Yang, H.-J., Kim, J., Dao, D-Ph., Park, H.-R., Pant, S.: Predicting progression of Alzheimer’s disease using forward-to-backward bi-directional network with integrative imputation. Neural Networks 150, 422–439 (2022)

    Google Scholar 

  15. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1(3), 325–362 (1952)

    Google Scholar 

  16. Beckmann, M., McGuir, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  17. Dafermos, S.: Traffic Assignment and Resource Allocation in Transportation Networks. Ph.D. Thesis, The Johns Hopkins University (1968)

    Google Scholar 

  18. Dafermos, S., Sparrow, F.T.: Traffic assignment problem for a general network. J. Res. Natl. Bureau Standards, Sect. B: Math. Sci. 73(2), 91–118 (1969)

    Article  MathSciNet  Google Scholar 

  19. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP, The Netherlands (1994)

    Google Scholar 

  20. Acemoglu, D., Ozdaglar, A.: Competition and efficiency in congested markets. Math. Oper. Res. 32(1), 1–31 (2007)

    Article  MathSciNet  Google Scholar 

  21. Acemoglu, D., Srikant, R.: Incentives and prices in communication networks. In: Algorithmic Game Theory. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.), pp. 107-132, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  22. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pp. 404–413, (1999)

    Google Scholar 

  23. Koutsoupias, E., Papadimitriou, Ch.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)

    Article  Google Scholar 

  24. Monnot, B., Benita, F., Piliouras, G.: Routing games in the wild: efficiency, equilibration and regret. In: Devanur, N.R., Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 340–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71924-5_24

    Chapter  Google Scholar 

  25. Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., Scarsini, M.: When is selfish routing bad? The price of anarchy in light and heavy traffic. Oper. Res. 68(2), 411–434 (2020)

    MathSciNet  Google Scholar 

  26. Wu, Z., Möhring, R,H., Chen, Y., Xu, D.: Selfishness Need Not Be Bad. Oper. Res. 69(2), 410-435 (2021)

    Google Scholar 

  27. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67(2), 341–364 (2003)

    Article  MathSciNet  Google Scholar 

  28. Bagdasaryan, A., Kalampakas, A., Saburov, M.: Dynamic traffic flow assignment on parallel networks. In: Karabegovic, I., Kovačević, A., Mandzuka, S. (eds.) New Technologies, Development and Application VI. NT 2023, LNNS, vol. 687, pp. 702–711. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31066-9_82

  29. Bagdasaryan, A., Kalampakas, A., Saburov, M., Spartalis, S.: Optimal traffic flow distributions on dynamic networks. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds.) Engineering Applications of Neural Networks, EANN 2023, Communications in Computer and Information Science, vol. 1826, pp. 178–190. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34204-2_16

  30. Kalampakas, A., Bagdasaryan, A., Saburov, M., Spartalis, S.: User equilibrium and system optimality conditions for flow distributions on congested networks. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds.) Engineering Applications of Neural Networks, EANN 2023, Communications in Computer and Information Science, vol. 1826, pp. 203–214 Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34204-2_18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Kalampakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagdasaryan, A., Kalampakas, A., Saburov, M. (2024). Discrete-Time Replicator Equations on Parallel Neural Networks. In: Iliadis, L., Maglogiannis, I., Papaleonidas, A., Pimenidis, E., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2024. Communications in Computer and Information Science, vol 2141. Springer, Cham. https://doi.org/10.1007/978-3-031-62495-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62495-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62494-0

  • Online ISBN: 978-3-031-62495-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics