Abstract
Recommender systems aim to improve the user experience in a world where data and available alternatives are expanding at an unprecedented rate. Integrating Natural Language Processing and Artificial Neural Networks have resulted in better performance when compared to other recommender systems. This paper showcases the optimization of an artificial neural network-based recommender system that is used for drug recommendation, where the optimization process involves adopting ResNet-50 and a Multiple Criteria Decision Making-based recommender system to tune the learning rate of the neural network models on which the system is based. Results show that our proposed approach leads to a system that outperforms the existing similar systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdullah, L., Chan, W.: Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. J. Ind. Eng. Int. 15 (2018). https://doi.org/10.1007/s40092-018-0289-z
AlMubasher, H., Doughan, Z., Sliman, L., Haidar, A.M.: A novel neural network-based recommender system for drug recommendation. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds.) EANN 2023. CCIS, vol. 1826, pp. 573–584. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34204-2_46
Asani, E., Vahdat-Nejad, H., Sadri, J.: Restaurant recommender system based on sentiment analysis. Mach. Learn. Appl. 6, 100114 (2021)
Benamara, F., Taboada, M., Mathieu, Y.: Evaluative language beyond bags of words: linguistic insights and computational applications. Comput. Linguist. 43(1), 201–264 (2017). https://doi.org/10.1162/COLI_a_00278
Birjali, M., Kasri, M., Beni-Hssane, A.: A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowl.-Based Syst. 226, 107134 (2021). https://doi.org/10.1016/j.knosys.2021.107134
Carrington, A.M., et al.: Deep roc analysis and AUC as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:2103.11357 (2021)
Churchill, R., Singh, L.: The evolution of topic modeling. ACM Comput. Surv. 54(10s) (2022). https://doi.org/10.1145/3507900
Di Gennaro, G., Buonanno, A., Palmieri, F.A.: Considerations about learning word2vec. J. Supercomput. 1–16 (2021)
Doughan, Z., Al Mubasher, H., Sliman, L., Haidar, A.: A multiple criteria decision making-based recommender system for neural network learning rate initialization [unpublished]. SSRN (2023). https://doi.org/10.2139/ssrn.4500557
Grm, K., Štruc, V., Artiges, A., Caron, M., Ekenel, H.K.: Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biomet. 7(1), 81–89 (2017) https://doi.org/10.1049/iet-bmt.2017.0083, http://dx.doi.org/10.1049/iet-bmt.2017.0083
Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
Isinkaye, F., Folajimi, Y., Ojokoh, B.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16(3), 261–273 (2015). https://doi.org/10.1016/j.eij.2015.06.005
Katarya, R., Arora, Y.: Capsmf: a novel product recommender system using deep learning based text analysis model. Multimed. Tools Appl. 79(47), 35927–35948 (2020)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Krohling, R., Pacheco, A.: Information technology and quantitative management (ITQM 2015) a-TOPSIS - an approach based on TOPSIS for ranking evolutionary algorithms. In: ITQM, vol. 55, pp. 308–317 (2015).https://doi.org/10.1016/j.procs.2015.07.054
Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2022). https://doi.org/10.1109/TKDE.2020.2981314
Marshetty, R.: Drug recommendation system (2022). https://medium.com/@marshettyruthvik/drug-recommendation-system-1b32d1cda680
Mohiuddin, M., Islam, M.S., Islam, S., Miah, M.S., Niu, M.B.: Intelligent fault diagnosis of rolling element bearings based on modified AlexNet. Sensors 23(18) (2023). https://doi.org/10.3390/s23187764, https://www.mdpi.com/1424-8220/23/18/7764
Omar, H.K., Frikha, M., Jumaa, A.K.: Big data cloud-based recommendation system using NLP techniques with machine and deep learning. TELKOMNIKA (Telecommun. Comput. Electron. Control) 21(5), 1076–1083 (2023)
Rahman, S.S.M.M., Biplob, K.B.M.B., Rahman, M.H., Sarker, K., Islam, T.: An investigation and evaluation of N-gram, TF-IDF and ensemble methods in sentiment classification. In: Bhuiyan, T., Rahman, M.M., Ali, M.A. (eds.) ICONCS 2020. LNICST, vol. 325, pp. 391–402. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52856-0_31
Ray, B., Garain, A., Sarkar, R.: An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl. Soft Comput. 98, 106935 (2021)
Repository, U.I.M.L.: UCI machine learning repository: drug review dataset (drugs.com) data set. https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., Zhao, Y.: A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 157, 377–403 (2020). https://doi.org/10.1016/j.renene.2020.04.137, https://www.sciencedirect.com/science/article/pii/S0960148120306753
Shimray, B.: A survey of multi-criteria decision making technique used in renewable energy planning. Int. J. Comput. (IJC) 25, 124–140 (2017)
Tabassum, A., Patil, R.R.: A survey on text pre-processing & feature extraction techniques in natural language processing. Int. Res. J. Eng. Technol. (IRJET) 7(06), 4864–4867 (2020)
Xie, Y.: Improve text classification accuracy with intent information (2022). https://doi.org/10.48550/ARXIV.2212.07649
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1) (2019). https://doi.org/10.1145/3285029
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Al Mubasher, H., Awad, M. (2024). An EANN-Based Recommender System for Drug Recommendation. In: Iliadis, L., Maglogiannis, I., Papaleonidas, A., Pimenidis, E., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2024. Communications in Computer and Information Science, vol 2141. Springer, Cham. https://doi.org/10.1007/978-3-031-62495-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-62495-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62494-0
Online ISBN: 978-3-031-62495-7
eBook Packages: Computer ScienceComputer Science (R0)