Skip to main content

An EANN-Based Recommender System for Drug Recommendation

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2024)

Abstract

Recommender systems aim to improve the user experience in a world where data and available alternatives are expanding at an unprecedented rate. Integrating Natural Language Processing and Artificial Neural Networks have resulted in better performance when compared to other recommender systems. This paper showcases the optimization of an artificial neural network-based recommender system that is used for drug recommendation, where the optimization process involves adopting ResNet-50 and a Multiple Criteria Decision Making-based recommender system to tune the learning rate of the neural network models on which the system is based. Results show that our proposed approach leads to a system that outperforms the existing similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah, L., Chan, W.: Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. J. Ind. Eng. Int. 15 (2018). https://doi.org/10.1007/s40092-018-0289-z

  2. AlMubasher, H., Doughan, Z., Sliman, L., Haidar, A.M.: A novel neural network-based recommender system for drug recommendation. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds.) EANN 2023. CCIS, vol. 1826, pp. 573–584. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34204-2_46

    Chapter  Google Scholar 

  3. Asani, E., Vahdat-Nejad, H., Sadri, J.: Restaurant recommender system based on sentiment analysis. Mach. Learn. Appl. 6, 100114 (2021)

    Google Scholar 

  4. Benamara, F., Taboada, M., Mathieu, Y.: Evaluative language beyond bags of words: linguistic insights and computational applications. Comput. Linguist. 43(1), 201–264 (2017). https://doi.org/10.1162/COLI_a_00278

    Article  MathSciNet  Google Scholar 

  5. Birjali, M., Kasri, M., Beni-Hssane, A.: A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowl.-Based Syst. 226, 107134 (2021). https://doi.org/10.1016/j.knosys.2021.107134

    Article  Google Scholar 

  6. Carrington, A.M., et al.: Deep roc analysis and AUC as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:2103.11357 (2021)

  7. Churchill, R., Singh, L.: The evolution of topic modeling. ACM Comput. Surv. 54(10s) (2022). https://doi.org/10.1145/3507900

  8. Di Gennaro, G., Buonanno, A., Palmieri, F.A.: Considerations about learning word2vec. J. Supercomput. 1–16 (2021)

    Google Scholar 

  9. Doughan, Z., Al Mubasher, H., Sliman, L., Haidar, A.: A multiple criteria decision making-based recommender system for neural network learning rate initialization [unpublished]. SSRN (2023). https://doi.org/10.2139/ssrn.4500557

  10. Grm, K., Štruc, V., Artiges, A., Caron, M., Ekenel, H.K.: Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biomet. 7(1), 81–89 (2017) https://doi.org/10.1049/iet-bmt.2017.0083, http://dx.doi.org/10.1049/iet-bmt.2017.0083

  11. Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2015)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  13. Isinkaye, F., Folajimi, Y., Ojokoh, B.: Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16(3), 261–273 (2015). https://doi.org/10.1016/j.eij.2015.06.005

    Article  Google Scholar 

  14. Katarya, R., Arora, Y.: Capsmf: a novel product recommender system using deep learning based text analysis model. Multimed. Tools Appl. 79(47), 35927–35948 (2020)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  16. Krohling, R., Pacheco, A.: Information technology and quantitative management (ITQM 2015) a-TOPSIS - an approach based on TOPSIS for ranking evolutionary algorithms. In: ITQM, vol. 55, pp. 308–317 (2015).https://doi.org/10.1016/j.procs.2015.07.054

  17. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2022). https://doi.org/10.1109/TKDE.2020.2981314

    Article  Google Scholar 

  18. Marshetty, R.: Drug recommendation system (2022). https://medium.com/@marshettyruthvik/drug-recommendation-system-1b32d1cda680

  19. Mohiuddin, M., Islam, M.S., Islam, S., Miah, M.S., Niu, M.B.: Intelligent fault diagnosis of rolling element bearings based on modified AlexNet. Sensors 23(18) (2023). https://doi.org/10.3390/s23187764, https://www.mdpi.com/1424-8220/23/18/7764

  20. Omar, H.K., Frikha, M., Jumaa, A.K.: Big data cloud-based recommendation system using NLP techniques with machine and deep learning. TELKOMNIKA (Telecommun. Comput. Electron. Control) 21(5), 1076–1083 (2023)

    Article  Google Scholar 

  21. Rahman, S.S.M.M., Biplob, K.B.M.B., Rahman, M.H., Sarker, K., Islam, T.: An investigation and evaluation of N-gram, TF-IDF and ensemble methods in sentiment classification. In: Bhuiyan, T., Rahman, M.M., Ali, M.A. (eds.) ICONCS 2020. LNICST, vol. 325, pp. 391–402. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52856-0_31

    Chapter  Google Scholar 

  22. Ray, B., Garain, A., Sarkar, R.: An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl. Soft Comput. 98, 106935 (2021)

    Article  Google Scholar 

  23. Repository, U.I.M.L.: UCI machine learning repository: drug review dataset (drugs.com) data set. https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29

  24. Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., Zhao, Y.: A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 157, 377–403 (2020). https://doi.org/10.1016/j.renene.2020.04.137, https://www.sciencedirect.com/science/article/pii/S0960148120306753

  25. Shimray, B.: A survey of multi-criteria decision making technique used in renewable energy planning. Int. J. Comput. (IJC) 25, 124–140 (2017)

    Google Scholar 

  26. Tabassum, A., Patil, R.R.: A survey on text pre-processing & feature extraction techniques in natural language processing. Int. Res. J. Eng. Technol. (IRJET) 7(06), 4864–4867 (2020)

    Google Scholar 

  27. Xie, Y.: Improve text classification accuracy with intent information (2022). https://doi.org/10.48550/ARXIV.2212.07649

  28. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1) (2019). https://doi.org/10.1145/3285029

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Al Mubasher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Mubasher, H., Awad, M. (2024). An EANN-Based Recommender System for Drug Recommendation. In: Iliadis, L., Maglogiannis, I., Papaleonidas, A., Pimenidis, E., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2024. Communications in Computer and Information Science, vol 2141. Springer, Cham. https://doi.org/10.1007/978-3-031-62495-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62495-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62494-0

  • Online ISBN: 978-3-031-62495-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics