Skip to main content

Machine Unlearning, A Comparative Analysis

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2024)

Abstract

This paper investigates the effectiveness of machine unlearning techniques in removing sensitive data from pre-trained Resnet-18 models using the CIFAR-10 dataset. Specifically, it compares the performance of Fine-Tuning and Fisher Noise-based Impair-Repair methods in minimizing data leakage and preserving model performance. The study evaluates the techniques’ ability to reduce Membership Inference Attack (MIA) scores while maintaining comparable accuracy on the retained data. The findings demonstrate that the Impair-Repair technique significantly reduces MIA scores compared to Fine-Tuning, showcasing its potential for responsible AI development. This approach allows for data privacy protection without compromising the model’s performance. The research contributes to advancing techniques that address the challenges of data privacy in machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., Tramer, F.: Membership inference attacks from first principles. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897–1914. IEEE (2022)

    Google Scholar 

  2. Chen, M., Gao, W., Liu, G., Peng, K., Wang, C.: Boundary unlearning: rapid forgetting of deep networks via shifting the decision boundary. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7766–7775 (2023)

    Google Scholar 

  3. Doughan, Z., Al Mubasher, H., Kassem, R., El-Hajj, A.M., Haidar, A.M., Sliman, L.: Logic-based neural network for pattern correction. In: 2022 International Conference on Smart Systems and Power Management (IC2SPM), pp. 52–57. IEEE (2022)

    Google Scholar 

  4. Doughan, Z., Kassem, R., El-Hajj, A.M., Haidar, A.M.: Logic-based neural network for image compression applications. In: 2021 3rd IEEE Middle East and North Africa Communications Conference (MENACOMM), pp. 92–97. IEEE (2021)

    Google Scholar 

  5. Doughan, Z., Kassem, R., El-Hajj, A.M., Haidar, A.M.: Novel preprocessors for convolution neural networks. IEEE Access 10, 36834–36845 (2022)

    Article  Google Scholar 

  6. Doughan, Z., Kassem, R., El-Hajj, A.M., Haidar, A.M.: Artificial neural network vision: between myth and reality. IEEE Potentials 42(3), 51–56 (2023)

    Article  Google Scholar 

  7. Fariza, A., Arifin, A.Z.: Age estimation system using deep residual network classification method. In: 2019 International Electronics Symposium (IES), pp. 607–611. IEEE (2019)

    Google Scholar 

  8. Foster, J., Schoepf, S., Brintrup, A.: Fast machine unlearning without retraining through selective synaptic dampening. arXiv preprint: arXiv:2308.07707 (2023)

  9. Liu, Y., Sun, C., Wu, Y., Zhou, A.: Unlearning with fisher masking. arXiv preprint: arXiv:2310.05331 (2023)

  10. NEURIPS: unlearning-cifar10.ipynb. https://github.com/unlearning-challenge/starting-kit/blob/main/unlearning-CIFAR10.ipynb (2023). gitHub repository

  11. Nguyen, T.T., Huynh, T.T., Nguyen, P.L., Liew, A.W.C., Yin, H., Nguyen, Q.V.H.: A survey of machine unlearning. arXiv preprint: arXiv:2209.02299 (2022)

  12. Sekhari, A., Acharya, J., Kamath, G., Suresh, A.T.: Remember what you want to forget: algorithms for machine unlearning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18075–18086 (2021)

    Google Scholar 

  13. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  14. Tarun, A.K., Chundawat, V.S., Mandal, M., Kankanhalli, M.: Deep regression unlearning. In: International Conference on Machine Learning, pp. 33921–33939. PMLR (2023)

    Google Scholar 

  15. Tarun, A.K., Chundawat, V.S., Mandal, M., Kankanhalli, M.: Fast yet effective machine unlearning. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  16. Thudi, A., Deza, G., Chandrasekaran, V., Papernot, N.: Unrolling SGD: understanding factors influencing machine unlearning. In: 2022 IEEE 7th European Symposium on Security and Privacy (EuroS &P), pp. 303–319. IEEE (2022)

    Google Scholar 

  17. Ullah, E., Mai, T., Rao, A., Rossi, R.A., Arora, R.: Machine unlearning via algorithmic stability. In: Conference on Learning Theory, pp. 4126–4142. PMLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Doughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doughan, Z., Itani, S. (2024). Machine Unlearning, A Comparative Analysis. In: Iliadis, L., Maglogiannis, I., Papaleonidas, A., Pimenidis, E., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2024. Communications in Computer and Information Science, vol 2141. Springer, Cham. https://doi.org/10.1007/978-3-031-62495-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62495-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62494-0

  • Online ISBN: 978-3-031-62495-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics