Skip to main content

Adaptive Forecasting of Extreme Electricity Load

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14670))

Included in the following conference series:

  • 353 Accesses

Abstract

Electricity load forecasting is a necessary capability for power system operators and electricity market participants. Both demand and supply characteristics evolve over time. On the demand side, unexpected or extreme events as well as longer-term changes in consumption habits affect demand patterns. On the production side, the increasing penetration of intermittent power generation significantly changes the forecasting needs. We address this challenge in three ways. First, we consider probabilistic (quantile) rather than point forecasting; indeed, uncertainty quantification is required to operate electricity systems efficiently and reliably. The probabilistic forecasts are generated using both linear and non-linear quantile regressions applied to the residuals of the mean forecasting model. Second, our approach is Adaptive; we have developed models that incorporate the most recent observations to automatically respond to changes in the underlying process. Our adaptation methodology leverages the Kalman filter, which has previously been successfully employed for adaptive load forecasting, as well as Online Gradient Descent - a combination of an incremental strategy and pinball loss. Third, we extend the adaptive setting to Extreme scenarios by using the aforementioned methods to compute an adaptive threshold used as a reference in recently developed machine learning models targeting extreme values. Finally, we apply our different approaches on the french daily electricity consumption as use case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests. Ann. Stat. 47(2), 1148–1178 (2019)

    Article  MathSciNet  Google Scholar 

  2. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)

    Article  MathSciNet  Google Scholar 

  3. Browell, J., Fasiolo, M.: Probabilistic forecasting of regional net-load with conditional extremes and gridded NWP. IEEE Trans. Smart Grid 12(6), 5011–5019 (2021)

    Article  Google Scholar 

  4. Doumèche, N., Allioux, Y., Goude, Y., Rubrichi, S.: Human spatial dynamics for electricity demand forecasting: the case of france during the 2022 energy crisis. arXiv preprint arXiv:2309.16238 (2023)

  5. Fan, S., Hyndman, R.J.: Forecast short-term electricity demand using semi-parametric additive model. In: 2010 20th Australasian Universities Power Engineering Conference, pp. 1–6. IEEE (2010)

    Google Scholar 

  6. Fasiolo, M., Wood, S.N., Zaffran, M., Nedellec, R., Goude, Y.: Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116(535), 1402–1412 (2021)

    Article  MathSciNet  Google Scholar 

  7. Gaillard, P., Goude, Y., Nedellec, R.: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32(3), 1038–1050 (2016)

    Article  Google Scholar 

  8. Gilbert, C., Browell, J., Stephen, B.: Probabilistic load forecasting for the low voltage network: forecast fusion and daily peaks. Sustain. Energy Grids Netw. 34, 100998 (2023)

    Article  Google Scholar 

  9. Gnecco, N., Terefe, E.M., Engelke, S.: Extremal random forests. J. Am. Stat. Assoc. (Jan), 1–24 (2024)

    Google Scholar 

  10. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  11. Gneiting, T., et al.: Model diagnostics and forecast evaluation for quantiles. Ann. Rev. Stat. Appl. 10(1), 597–621 (2023)

    Article  MathSciNet  Google Scholar 

  12. Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., Zareipour, H.: Energy forecasting: a review and outlook. IEEE Open Access J. Power Energy 7, 376–388 (2020)

    Article  Google Scholar 

  13. Jiang, P., Van Fan, Y., Klemeš, J.J.: Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities. Appl. Energy 285, 116441 (2021)

    Article  Google Scholar 

  14. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  15. Koenker, R., Bassett, G., Jr.: Regression quantiles. Econ. J. Econ. Soc. 33–50 (1978)

    Google Scholar 

  16. Obst, D., de Vilmarest, J., Goude, Y.: Adaptive methods for short-term electricity load forecasting during COVID-19 lockdown in France. IEEE Trans. Power Syst. 36(5), 4754–4763 (2021)

    Article  Google Scholar 

  17. Pasche, O.C., Engelke, S.: Neural networks for extreme quantile regression with an application to forecasting of flood risk, April 2023

    Google Scholar 

  18. Pickands, J., III: Statistical inference using extreme order statistics. Ann. Stat. 119–131 (1975)

    Google Scholar 

  19. Pierrot, A., Goude, Y.: Short-term electricity load forecasting with generalized additive models. In: Proceedings of ISAP Power 2011 (2011)

    Google Scholar 

  20. Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 1174–1207 (1987)

    Google Scholar 

  21. Velthoen, J., Dombry, C., Cai, J.J., Engelke, S.: Gradient boosting for extreme quantile regression. Extremes 26(4), 639–667 (2023)

    Article  MathSciNet  Google Scholar 

  22. de Vilmarest, J.: Viking: state-space models inference by Kalman or Viking (2022). https://CRAN.R-project.org/package=viking. R package version 1.0.0

  23. de Vilmarest, J., Goude, Y.: State-space models for online post-COVID electricity load forecasting competition. IEEE Open Access J. Power Energy 9, 192–201 (2022)

    Article  Google Scholar 

  24. de Vilmarest, J., Wintenberger, O.: Viking: variational Bayesian variance tracking, November 2021

    Google Scholar 

  25. de Vilmarest, J., Browell, J., Fasiolo, M., Goude, Y., Wintenberger, O.: Adaptive probabilistic forecasting of electricity (net-)load. IEEE Trans. Power Syst. 1–10 (2023)

    Google Scholar 

  26. Wintenberger, O.: Optimal learning with Bernstein online aggregation. Mach. Learn. 106(1), 119–141 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wood, S.N.: Generalized Additive Models: An Introduction with R. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  28. Youngman, B.D.: Electricity market report - update 2023. J. Stat. Softw. 103(3), 1–26 (2022)

    Google Scholar 

  29. Youngman, B.D.: evgam: An R package for generalized additive extreme value models. J. Stat. Softw. 103(3), 1–26 (2022)

    Article  Google Scholar 

  30. Zaffran, M., Féron, O., Goude, Y., Josse, J., Dieuleveut, A.: Adaptive conformal predictions for time series. In: International Conference on Machine Learning, pp. 25834–25866. PMLR (2022)

    Google Scholar 

Download references

Acknowlegements

We thank our colleague Pr Olivier Wintenberger from Sorbonne Université and Wolfgang Pauli Institut, c/o Fakultät für Mathematik, Universität who helped us to initiate this project and provided insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Himych, O., Durand, A., Goude, Y. (2024). Adaptive Forecasting of Extreme Electricity Load. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62700-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62699-9

  • Online ISBN: 978-3-031-62700-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics