Abstract
Updatable Encryption (UE) allows to rotate the encryption key in the outsourced storage setting while minimizing the bandwith used. The server can update ciphertexts to the new key using a token provided by the client. UE schemes should provide strong confidentiality guarantees against an adversary that can corrupt keys and tokens.
This paper studies the problem of building UE in the group action framework. We introduce a new notion of Mappable Effective Group Action (MEGA) and show that we can build CCA secure UE from a MEGA by generalizing the SHINE construction of Boyd et al. at Crypto 2020. Unfortunately, we do not know how to instantiate this new construction in the post-quantum setting. Doing so would solve the open problem of building a CCA secure post-quantum UE scheme.
Isogeny-based group actions are the most studied post-quantum group actions. Unfortunately, the resulting group actions are not mappable. We show that we can still build UE from isogenies by introducing a new algebraic structure called Effective Triple Orbital Group Action (ETOGA). We prove that UE can be built from an ETOGA and show how to instantiate this abstract structure from isogeny-based group actions. This new construction solves two open problems in ciphertext-independent post-quantum UE. First, this is the first post-quantum UE scheme that supports an unbounded number of updates. Second, our isogeny-based UE scheme is the first post-quantum UE scheme not based on lattices. The security of this new scheme holds under an extended version of the weak pseudorandomness of the standard isogeny group action.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 699–728. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_24
Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_14
Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography. ACM (2016)
Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptology ePrint Archive (2023)
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23
Booher, J., et al.: Failing to hash into supersingular isogeny graphs. arXiv preprint arXiv:2205.00135 (2022)
Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_16
Castryck, W., Houben, M., Merz, S.P., Mula, M., Buuren, S.V., Vercauteren, F.: Weak instances of class group action based cryptography via self-pairings. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14083, pp. 762–792. Springer, Cham (2023)
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman problem for class group actions using genus theory. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 92–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_4
Chen, M., Leroux, A.: Scallop-HD: group action from 2-dimensional isogenies., Cryptology ePrint Archive (2023)
Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptol. 14, 414–437 (2020)
Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_1
Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_24
Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of large prime degree. ANTS XIV 4(1), 39–55 (2020)
De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 249–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_9
Espitau, T., Kirchner, P.: The nearest-colattice algorithm: time-approximation tradeoff for approx-CVP. Open Book Series 4(1), 251–266 (2020)
Feo, L.D., et al.: SCALLOP: scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. LNCS, vol. 13940, pp. 345–375. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_13
Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH attacks by masking information. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 282–309. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_10
Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle model and the ideal cipher model, revisited. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 89-98. Association for Computing Machinery, New York (2011)
Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: a candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_11
Jiang, Y.: The direction of updatable encryption does not matter much. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 529–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_18
Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_3
Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_22
Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_16
Miao, P., Patranabis, S., Watson, G.: Unidirectional updatable encryption and proxy re-encryption from DDH. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. LNCS, vol. 13941, pp. 368–398. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31371-4_13
Moriya, T., Onuki, H., Takagi, T.: SiGamal: a supersingular isogeny-based PKE and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_19
Naehrig, M., Renes, J.: Dual isogenies and their application to public-key compression for isogeny-based cryptography. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 243–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_9
Nishimaki, R.: The direction of updatable encryption does matter. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 194–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_7
Onuki, H.: On oriented supersingular elliptic curves. Finite Fields Appl. 69, 101777 (2021)
Pereira, G., Doliskani, J., Jao, D.: X-only point addition formula and faster compressed SIKE. J. Cryptogr. Eng. 11, 1–13 (2021)
Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical post-quantum signature schemes from isomorphism problems of trilinear forms. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 582–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_21
Vélu, J.: Isogénies entre courbes elliptiques. Compt.-Rendus l’Acad. Sci. Série I 273, 238–241 (1971)
Wesolowski, B.: Orientations and the supersingular endomorphism ring problem. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 345–371. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_13
Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster isogeny-based compressed key agreement. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_12
Acknowledgements
The authors are very thankful to Jonas Lehmann and Sabrina Kunzweiler for pointing out a mistake in an earlier version of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A Computing Leakage Sets
Following [25], extended epoch leakage sets \(\mathcal {C}^*\), \(\mathcal {K}^*\) and \(\mathcal {T}^*\) are computed as follows:
Likewise, we extend \(\mathcal {I}\) into \(\mathcal {I}^*\):
Appendix B The \(\textsf{Check}\) Algorithm
In our proofs, reductions play hybrid games and guess the location of the i-th insulated region. If the adversary sends a corrupt query inside this insulated region, the guess is wrong and reductions have to abort. We use the algorithm \(\textsf{Check}\) of [8], described in Fig. 9, to check if this event happens.
Algorithm \(\textsf{Check}\) of [8] used in our proofs. \(\hat{\textsf{e}}\) is the epoch in the adversary’s request and \(\textsf{e}\) is the current epoch.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Leroux, A., Roméas, M. (2024). Updatable Encryption from Group Actions. In: Saarinen, MJ., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2024. Lecture Notes in Computer Science, vol 14772. Springer, Cham. https://doi.org/10.1007/978-3-031-62746-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-62746-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62745-3
Online ISBN: 978-3-031-62746-0
eBook Packages: Computer ScienceComputer Science (R0)