Skip to main content

Fault Attack on SQIsign

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2024)

Abstract

In this paper, we introduce the first fault attack on SQIsign. By injecting a fault into the ideal generator during the commitment phase, we demonstrate a meaningful probability of inducing the generation of order \(\mathcal {O}_0\). The probability is bounded by one parameter, the degree of commitment isogeny. We also show that the probability can be reasonably estimated by assuming uniform randomness of a random variable, and provide empirical evidence supporting the validity of this approximation. In addition, we identify a loop-abort vulnerability due to the iterative structure of the isogeny operation. Exploiting these vulnerabilities, we present key recovery fault attack scenarios for two versions of SQIsign—one deterministic and the other randomized. We then analyze the time complexity and the number of queries required for each attack. Finally, we discuss straightforward countermeasures that can be implemented against the attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper, the term “SQIsign” and its implementation refer to version 1.0 released as a NIST Round 1 addition signature candidate on June 1, 2023.

  2. 2.

    While SQIsign [8] does not explicitly mention deterministic and randomized versions, it is noted that Fiat-Shamir heuristic-based digital signatures such as CRYSTALS-Dilithium [12] and HAETAE [9] (one of the candidates on NIST round 1 additional signatures) included or now include deterministic algorithms. Thus, it is reasonable to consider the attack on the two versions of SQIsign.

References

  1. Adj, G., Chi-Domínguez, J.J., Mateu, V., Rodríguez-Henríquez, F.: Faulty isogenies: a new kind of leakage. arXiv preprint arXiv:2202.04896 (2022)

  2. Banegas, G., et al.: Disorientation faults in CSIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 310–342. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_11

    Chapter  Google Scholar 

  3. Beegala, P., Roy, D.B., Ravi, P., Bhasin, S., Chattopadhyay, A., Mukhopadhyay, D.: Efficient loop abort fault attacks on Supersingular Isogeny based Key Exchange (SIKE). In: 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6. IEEE (2022)

    Google Scholar 

  4. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of large prime degree. Open Book Series 4(1), 39–55 (2020)

    Article  MathSciNet  Google Scholar 

  5. Campos, F., Kannwischer, M.J., Meyer, M., Onuki, H., Stöttinger, M.: Trouble at the CSIDH: protecting CSIDH with dummy-operations against fault injection attacks. In: 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), pp. 57–65. IEEE (2020)

    Google Scholar 

  6. Campos, F., Krämer, J., Müller, M.: Safe-error attacks on SIKE and CSIDH. In: Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2021. LNCS, vol. 13162, pp. 104–125. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95085-9_6

    Chapter  Google Scholar 

  7. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 423–447. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15

    Chapter  Google Scholar 

  8. Chavez-Saab, J., et al.: SQIsign: algorithm specifications and supporting documentation (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf

  9. Cheon, J.H., et al.: HAETAE: shorter lattice-based Fiat-Shamir signatures. Cryptology ePrint Archive (2023)

    Google Scholar 

  10. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_3

    Chapter  Google Scholar 

  11. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the Deuring correspondence: towards practical and secure SQISign signatures. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 659–690. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_23

    Chapter  Google Scholar 

  12. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptographic Hardware Embed. Syst. 238–268 (2018)

    Google Scholar 

  13. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_11

    Chapter  Google Scholar 

  14. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-based Fiat-Shamir and hash-and-sign signatures. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 140–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_8

    Chapter  Google Scholar 

  15. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryptosystems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 93–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_6

    Chapter  Google Scholar 

  16. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-isogeny path problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

    Article  MathSciNet  Google Scholar 

  17. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_16

    Chapter  Google Scholar 

  18. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

    Chapter  Google Scholar 

  19. Tasso, É., De Feo, L., El Mrabet, N., Pontié, S.: Resistance of isogeny-based cryptographic implementations to a fault attack. In: Bhasin, S., De Santis, F. (eds.) COSADE 2021. LNCS, vol. 12910, pp. 255–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89915-8_12

    Chapter  Google Scholar 

  20. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_7

    Chapter  Google Scholar 

  21. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des Sciences 273, 238–241 (1971)

    MathSciNet  Google Scholar 

  22. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems are equivalent. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1100–1111. IEEE (2022)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their helpful comments on this work. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) under Grant NRF-2020R1A2C1011769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhie Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J. et al. (2024). Fault Attack on SQIsign. In: Saarinen, MJ., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2024. Lecture Notes in Computer Science, vol 14772. Springer, Cham. https://doi.org/10.1007/978-3-031-62746-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62746-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62745-3

  • Online ISBN: 978-3-031-62746-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics