Skip to main content

Driven PCTBagging: Seeking Greater Discriminating Capacity for the Same Level of Interpretability

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2024)

Abstract

The partial consolidated tree bagging (PCTBagging) was presented as a multiple classifier that, based on a parameter, the consolidation percentage, can exploit more the possibilities of the inner ensembles, and obtain higher levels of interpretability, or can exploit more the possibilities of the ensembles, and obtain higher discriminant capacity. Thus, at the extreme values, with a consolidation percentage of 100% it obtains a consolidated tree (CTC algorithm) and with 0% consolidation it obtains a Bagging. For intermediate values, the consolidated tree is collapsed to the number of internal nodes corresponding to the percentage value, selecting the biggest possible nodes. In this paper we propose a strategy to directly develop the partial consolidated tree, i.e. without the need to build the complete consolidated tree and, in addition, we explore up to 4 other different criteria, besides the size of the nodes, to decide which will be the next node to be developed in the partial consolidated tree: Pre-order, Gain ratio, Gain ratio \(\times \) Size, and, Level by level. The results show that the use of different criteria affects the discriminant capacity of the classifier for the same level of interpretability, and that this effect is greater the higher the percentage of consolidation is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://weka.sourceforge.io/packageMetaData/J48PartiallyConsolidated/

  2. 2.

    We are trying to update this package with the proposal of this paper.

  3. 3.

    http://www.aldapa.eus/res/2024/DrivenPCTBag

References

  1. Alatrany, A.S., Khan, W., Hussain, A., Kolivand, H., Al-Jumeily, D.: An explainable machine learning approach for Alzheimer’s disease classification. Sci. Rep. 14(1), 2637 (2024). https://doi.org/10.1038/s41598-024-51985-w

    Article  Google Scholar 

  2. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.: A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 173–180 (2007). https://doi.org/10.1109/TPAMI.2007.2

    Article  Google Scholar 

  3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999). https://doi.org/10.1023/A:1007515423169

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1023/A:1018054314350

    Article  Google Scholar 

  5. Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE Trans. Evol. Comput. 14(6), 913–941 (2010). https://doi.org/10.1109/TEVC.2009.2039140

    Article  Google Scholar 

  6. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench, chap. Online Appendix, 4th edn. Morgan Kaufmann (2016). https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

  7. Ibarguren, I., Lasarguren, A., Pérez, J.M., Muguerza, J., Gurrutxaga, I., Arbelaitz, O.: BFPART: best-first PART. Inf. Sci. 367–368, 927–952 (2016). https://doi.org/10.1016/j.ins.2016.07.023

    Article  Google Scholar 

  8. Ibarguren, I., Pérez, J.M., Muguerza, J., Gurrutxaga, I., Arbelaitz, O.: Coverage-based resampling: building robust consolidated decision trees. Knowl.-Based Syst. 79, 51–67 (2015). https://doi.org/10.1016/j.knosys.2014.12.023

    Article  Google Scholar 

  9. Ibarguren, I., Pérez, J.M., Muguerza, J., Arbelaitz, O., Yera, A.: PCTBagging: from inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability. Inf. Sci. 583, 219–238 (2022). https://doi.org/10.1016/j.ins.2021.11.010

    Article  Google Scholar 

  10. Khosravi, H., et al.: Explainable artificial intelligence in education. Comput. Educ. Artif. Intell. 3, 100074 (2022). https://doi.org/10.1016/j.caeai.2022.100074

    Article  Google Scholar 

  11. Love, P.E., Fang, W., Matthews, J., Porter, S., Luo, H., Ding, L.: Explainable artificial intelligence (XAI): precepts, models, and opportunities for research in construction. Adv. Eng. Inform. 57, 102024 (2023). https://doi.org/10.1016/j.aei.2023.102024

    Article  Google Scholar 

  12. Pérez, J.M., et al.: Consolidated trees versus bagging when explanation is required. Computing 89, 113–145 (2010). https://doi.org/10.1007/s00607-010-0094-z

    Article  MathSciNet  Google Scholar 

  13. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I.: A new algorithm to build consolidated trees: study of the error rate and steadiness. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. AINSC, vol. 25, pp. 79–88. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39985-8_9

    Chapter  Google Scholar 

  14. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Combining multiple class distribution modified subsamples in a single tree. Pattern Recogn. Lett. 28(4), 414–422 (2007). https://doi.org/10.1016/j.patrec.2006.08.013

    Article  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by grant PID2021-123087OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and, ERDF A way of making Europe, and by the Department of Education, Universities and Research of the Basque Government (ADIAN, IT-1437-22). We would like to thank our former undergraduate student Josué Cabezas, who participated in the implementation of the Driven PCTBagging algorithm for the WEKA platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús María Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, J.M., Arbelaitz, O., Muguerza, J. (2024). Driven PCTBagging: Seeking Greater Discriminating Capacity for the Same Level of Interpretability. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62799-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62798-9

  • Online ISBN: 978-3-031-62799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics