Skip to main content

Semi-supervised Learning Methods for Semantic Segmentation of Polyps

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2024)

Abstract

Nowadays, colorectal cancer is one of the most common cancers, and early detection would greatly help improve patient survival. The current methods used by physicians to detect it are based on the visual detection of polyps in colonoscopy, a task that can be tackled by means of semantic segmentation methods. However, the amount of data necessary to train deep learning models for these problems is a barrier for their adoption. In this work, we study the application of different semi-supervised learning techniques to this problem when we have a small amount of annotated data. In this study, we have used the Kvasir-SEG data set, taking only 60 and 120 annotated images and studying the behaviour of the Data Distillation, Model Distillation, and Data & Model distillation methods in both cases, using 10 different architectures. The results show that as we increase the number of initially annotated data, most models obtained better results, but two of them performed worse in the baseline case. Furthermore, we can conclude that the Data Distillation method increases the performance of the models a 48.6% and 30.6% on average using 60 and 120 annotated images respectively. Finally, using only 12% of the annotated data and applying Data Distillation, the results obtained are not very far from those obtained by training the models with the fully annotated dataset. For all these reasons, we conclude that the Data Distillation method is a good tool in semantic segmentation problems when the number of initially annotated images is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/adines/polyp-semi-seg.

References

  1. Amirkhani, A., Khosravian, A., Masih-Tehrani, M., Kashiani, H.: Robust semantic segmentation with multi-teacher knowledge distillation. IEEE Access 9, 119049–119066 (2021). https://doi.org/10.1109/ACCESS.2021.3107841

    Article  Google Scholar 

  2. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression: making big, slow models practical. In: 12th International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 535–541 (2006)

    Google Scholar 

  3. Carass, A., et al.: Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis. Sci. Rep. 10(1), 8242 (2020)

    Article  Google Scholar 

  4. Cui, S., Mao, L., Jiang, J., Liu, C., Xiong, S., et al.: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018, 4940593 (2018)

    Article  Google Scholar 

  5. Dou, Q., Liu, Q., Heng, P.A., Glocker, B.: Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans. Med. Imaging 39(7), 2415–2425 (2020). https://doi.org/10.1109/TMI.2019.2963882

    Article  Google Scholar 

  6. Feng, Y., Sun, X., Diao, W., Li, J., Gao, X.: Double similarity distillation for semantic image segmentation. IEEE Trans. Image Process. 30, 5363–5376 (2021). https://doi.org/10.1109/TIP.2021.3083113

    Article  Google Scholar 

  7. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  8. Haggar, F.A., Boushey, R.P.: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon. Rectal. Surg. 22(04), 191–197 (2009)

    Article  Google Scholar 

  9. Hinton, G., et al.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  10. Howard, J., Gugger, S.: Fastai: a layered API for deep learning. Information 11, 108 (2020). https://doi.org/10.3390/info11020108

    Article  Google Scholar 

  11. Huang, R., Noble, J.A., Namburete, A.I.L.: Omni-supervised learning: scaling up to large unlabelled medical datasets. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 572–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_65

    Chapter  Google Scholar 

  12. Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V.: Biomedical image classification made easier thanks to transfer and semi-supervised learning. Comput. Methods Programs Biomed. 198, 105782 (2021)

    Article  Google Scholar 

  13. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  14. Mei, J., et al.: A survey on deep learning for polyp segmentation: techniques, challenges and future trends (2024)

    Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  16. Pogorelov, K., et al.: KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys 2017, pp. 164–169. ACM, New York (2017). https://doi.org/10.1145/3083187.3083212

  17. Secretariat, M.A.: Screening methods for early detection of colorectal cancers and polyps: summary of evidence-based analyses. Ontario Health Technol. Assess. Ser. 9(6), 1 (2009)

    Google Scholar 

  18. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR 2003), vol. 2, pp. 958–964 (2003)

    Google Scholar 

  19. Smith, L.: Cyclical learning rates for training neural networks. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2017, pp. 464–472 (2017). https://doi.org/10.1109/WACV.2017.58

  20. Soulami, K.B., Kaabouch, N., Saidi, M.N., Tamtaoui, A.: Breast cancer: one-stage automated detection, segmentation, and classification of digital mammograms using UNet model based-semantic segmentation. Biomed. Sig. Process. Control 66, 102481 (2021)

    Article  Google Scholar 

  21. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  22. The Cancer Atlas: The burden of cancer (2024). https://canceratlas.cancer.org/the-burden/the-burden-of-cancer/

  23. Triguero, I., et al.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42, 245–284 (2015). https://doi.org/10.1007/s10115-013-0706-y

    Article  Google Scholar 

  24. Van Rijn, J.C., et al.: Polyp miss rate determined by tandem colonoscopy: a systematic review. Official J. Am. Coll. Gastroenterol.|ACG 101(2), 343–350 (2006)

    Google Scholar 

  25. Wu, Z., Lv, F., Chen, C., Hao, A., Li, S.: Colorectal polyp segmentation in the deep learning era: a comprehensive survey (2024)

    Google Scholar 

  26. You, C., Zhou, Y., Zhao, R., Staib, L., Duncan, J.S.: SimCVD: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 41(9), 2228–2237 (2022). https://doi.org/10.1109/TMI.2022.3161829

    Article  Google Scholar 

  27. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2009)

    Google Scholar 

Download references

Acknowledgements

Partially supported by Ministerio de Ciencia e Innovación [PID2020-115225RB-I00/AEI/10.13039/501100011033], and by Agencia de Desarrollo Econonómico de La Rioja [ADER 2022-I-IDI-00015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Inés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V. (2024). Semi-supervised Learning Methods for Semantic Segmentation of Polyps. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62799-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62798-9

  • Online ISBN: 978-3-031-62799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics