Skip to main content

Ground-Level Ozone Forecasting Using Explainable Machine Learning

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2024)

Abstract

The ozone concentration at ground level is a pivotal indicator of air quality, as elevated ozone levels can lead to adverse effects on the environment. In this study various machine learning models for ground-level ozone forecasting are optimised using a Bayesian technique. Predictions are obtained 24 h in advance using historical ozone data and related environmental variables, including meteorological measurements and other air quality indicators. The results indicated that the Extra Trees model emerges as the optimal solution, showcasing competitive performance alongside reasonable training times. Furthermore, an explainable artificial intelligence technique is applied to enhance the interpretability of model predictions, providing insights into the contribution of input features to the predictions computed by the model. The features identified as important, namely \(PM_{10}\), air temperature and \(CO_2\) concentration, are validated as key factors in the literature to forecast ground-level ozone concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hashim, B.M., Al-Naseri, S.K., Al-Maliki, A., Al-Ansari, N.: Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 754, 141978 (2021)

    Google Scholar 

  2. Yafouz, A., Ahmed, A.N., Zaini, N.A., El-Shafie, A.: \(O_3\) concentration forecasting based on artificial intelligence techniques: a systematic review. Water Air Soil Pollut. 232, 1–29 (2021)

    Article  Google Scholar 

  3. Fan, K., Dhammapala, R., Harrington, K., Lamastro, R., Lamb, B., Lee, Y.: Development of a machine learning approach for local-scale \(O_3\) forecasting: application to Kennewick, WA. Front. Big Data 5, 781309 (2022)

    Article  Google Scholar 

  4. Damon, J., Guillas, S.: The inclusion of exogenous variables in functional autoregressive \(O_3\) forecasting. Environmetrics 13(7), 759–774 (2002)

    Article  Google Scholar 

  5. Gradišar, D., Grašič, B., Božnar, M.Z., Mlakar, P., Kocijan, J.: Improving of local ozone forecasting by integrated models. Environ. Sci. Pollut. Res. 23, 18439–18450 (2016)

    Article  Google Scholar 

  6. Cobourn, W.G., Dolcine, L., French, M., Hubbard, M.C.: A comparison of nonlinear regression and neural network models for ground-level \(O_3\) forecasting. J. Air Waste Manag. Assoc. 50(11), 1999–2009 (2000)

    Article  Google Scholar 

  7. Oliveira Santos, V., Costa Rocha, P.A., Scott, J., Van Griensven Thé, J., Gharabaghi, B.: Spatiotemporal air pollution forecasting in houston-TX: a case study for \(O_3\) using deep graph neural networks. Atmosphere 14(2), 308 (2023)

    Article  Google Scholar 

  8. Sun, H., et al.: Improvement of PM\(_{2.5}\) and \(O_3\) forecasting by integration of 3D numerical simulation with deep learning techniques. Sustain. Cities Soc. 75, 103372 (2021)

    Google Scholar 

  9. Palaniyappan Velumani, R., Xia, M., Han, J., Wang, C., Lau, A.K., Qu, H.: AQX: explaining air quality forecast for verifying domain knowledge using feature importance visualization. In: 27th International Conference on Intelligent User Interfaces, pp. 720–733 (2022)

    Google Scholar 

  10. Troncoso-García, A.R., Brito, I.S., Troncoso, A., Martínez-Álvarez, F.: Explainable hybrid deep learning and Coronavirus Optimization Algorithm for improving evapotranspiration forecasting. Comput. Electron. Agric. 215, 108387 (2023)

    Article  Google Scholar 

  11. Troncoso-García, A.R., Troncoso, A., Martínez-Ballesteros, M., Martínez-Álvarez, F.: Evolutionary computation to explain deep learning models for time series forecasting. In: Proceedings of the ACM/SIGAPP Symposium on Applied Computing, pp. 433–436 (2023)

    Google Scholar 

  12. Martínez-Ballesteros, M., Troncoso, A., Martínez-Álvarez, F., Riquelme, J.C.: Improving a multi-objective evolutionary algorithm to discover quantitative association rules. Knowl. Inf. Syst. 49, 481–509 (2016)

    Article  Google Scholar 

  13. Troncoso-García, A.R., Martínez-Ballesteros, M., Martínez-Álvarez, F., Troncoso, A.: A new approach based on association rules to add explainability to time series forecasting models. Inf. Fusion 94, 169–180 (2023)

    Article  Google Scholar 

  14. Gómez-Losada, A., Asencio-Cortés, G., Martínez-Álvarez, F., Riquelme, J.C.: A novel approach to forecast urban surface-level ozone considering heterogeneous locations and limited information. Environ. Model. Softw. 110, 52–61 (2018)

    Article  Google Scholar 

  15. Anav, A., et al.: Legislative and functional aspects of different metrics used for \(O_3\) risk assessment to forests. Environ. Pollut. 295, 118690 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spanish Ministry of Science and Innovation for the support within the projects PID2020-117954RB-C21 and TED2021-131311B-C22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Robledo Troncoso-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Troncoso-García, A.R., Jiménez-Navarro, M.J., Martínez-Álvarez, F., Troncoso, A. (2024). Ground-Level Ozone Forecasting Using Explainable Machine Learning. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62799-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62798-9

  • Online ISBN: 978-3-031-62799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics