Skip to main content

Image Classification with Recurrent Spiking Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2024)

Abstract

In this work we test some state of the art works in Spiking Neural Networks (SNN) to train them using surrogate gradients and using different loss functions to perform classification tasks using recurrent SNN and with our own datasets. We show that this kind of networks can accomplish in a good way the classifications tasks, but can not generalize the features of the incoming images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellec, G., et al.: A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 11(1), 3625 (2020)

    Article  Google Scholar 

  2. Eshraghian, J.K.: snnTorch documentation (2021). https://snntorch.readthedocs.io/en/latest/. Accessed 08 Feb 2024

  3. Eshraghian, J.K., et al.: Training spiking neural networks using lessons from deep learning. In: Proceedings of the IEEE (2023)

    Google Scholar 

  4. Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y.: Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671 (2021)

    Google Scholar 

  5. Hasanpour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple, using simple architectures to outperform deeper and more complex architectures. arXiv preprint arXiv:1608.06037 (2016)

  6. Modha, D.S., et al.: Neural inference at the frontier of energy, space, and time. Science 382(6668), 329–335 (2023)

    Article  Google Scholar 

  7. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36(6), 51–63 (2019)

    Article  Google Scholar 

  8. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  Google Scholar 

  9. Reynolds, J.J., et al.: A comparison of neuromorphic classification tasks. In: Proceedings of the International Conference on Neuromorphic Systems, pp. 1–8 (2018)

    Google Scholar 

  10. Schuman, C.D., et al.: Opportunities for neuromorphic computing algorithms and applications. Nature Comput. Sci. 2(1), 10–19 (2022)

    Article  Google Scholar 

  11. Stöckl, C., Maass, W.: Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes. Nat. Mach. Intell. 3(3), 230–238 (2021)

    Article  Google Scholar 

  12. Yamazaki, K., Vo-Ho, V.K., Bulsara, D., Le, N.: Spiking neural networks and their applications: a review. Brain Sci. 12(7), 863 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Cureño Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cureño Ramirez, A., García Morgado, B., de la Fraga, L.G. (2024). Image Classification with Recurrent Spiking Neural Networks. In: Mezura-Montes, E., Acosta-Mesa, H.G., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2024. Lecture Notes in Computer Science, vol 14755. Springer, Cham. https://doi.org/10.1007/978-3-031-62836-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62836-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62835-1

  • Online ISBN: 978-3-031-62836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics