Skip to main content

BRAVE: Bio Responsive Alert VEst

  • Conference paper
  • First Online:
Computers Helping People with Special Needs (ICCHP 2024)

Abstract

The paper describes a low-cost system incorporating galvanic skin response, heart rate, and respiratory rate sensors, allowing for emotion classification based on the valence-arousal model. The system lays the groundwork for an innovative device capable of detecting fear during aggressive situations and automatically triggering an SOS. Tests in a controlled environment by visually stimulating emotions demonstrate the reliability of the low-cost sensors.

Partially supported by the Dipartimento di Elettronica, Informazione e Bioingegneria of the Politecnico di Milano, Milano, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RAINN Organization. American statistics. https://www.rainn.org/statistics/vic-tims-sexual-violence

  2. Čihounková, J., Skotáková, A., Reguli, Z.: Security concerns and conflict experience of physically disabled people in the Czech Republic. Stud. Sportiva 17(2), 43–52 (2023)

    Article  Google Scholar 

  3. Robinson, S.: Safe at home? Factors influencing the safety strategies used by people with intellectual disability. Scand. J. Disabil. Res. 16(2), 99–113 (2014). https://doi.org/10.1080/15017419.2013.781958

    Article  Google Scholar 

  4. Hughes, K., et al.: Prevalence and risk of violence against adults with disabilities: a systematic review and meta-analysis of observational studies. Lancet 379(9826), 1621–1629 (2012). https://doi.org/10.1016/S0140-6736(11)61851-5

    Article  Google Scholar 

  5. Miranda Calero, J.A., et al.: Bindi: affective internet of things to combat gender-based violence. IEEE Internet Things J. 9(21), 21174–21193 (2022). https://doi.org/10.1109/JIOT.2022.3177256

    Article  Google Scholar 

  6. Wang, Y., et al.: A systematic review on affective computing: emotion models, databases, and recent advances. Inf. Fusion 83–84, 19–52 (2022). https://doi.org/10.1016/j.inffus.2022.03.009

    Article  Google Scholar 

  7. Dzedzickis, A., Kaklauskas, A., Bucinskas, V.: Human emotion recognition: review of sensors and methods. Sensors 20, 592 (2020). https://doi.org/10.3390/s20030592

    Article  Google Scholar 

  8. Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theor. Comput. Sci. 343, 35–55 (2019). https://doi.org/10.1016/j.entcs.2019.04.009. ISSN 1571-0661

    Article  Google Scholar 

  9. Assabumrungrat, R., et al.: Ubiquitous affective computing: a review. IEEE Sens. J. 22(3), 1867–1881 (2022). https://doi.org/10.1109/JSEN.2021.3138269

    Article  Google Scholar 

  10. Lykken, D.T.: The GSR in the detection of guilt. J. Appl. Psychol. 43(6), 385–388 (1959). https://doi.org/10.1037/h0046060

    Article  Google Scholar 

  11. Saganowski, S., et al.: Review of consumer wearables in emotion, stress, meditation, sleep, and activity detection and analysis. arXiv preprint arXiv:2005.00093 (2020)

  12. Shu, L., et al.: Wearable emotion recognition using heart rate data from a smart bracelet. Sensors 20, 718 (2020). https://doi.org/10.3390/s20030718

    Article  Google Scholar 

  13. Wang, Z., Yu, Z., Zhao, B., Guo, B., Chen, C., Yu, Z.: EmotionSense: an adaptive emotion recognition, system based on wearable smart devices. ACM Trans. Comput. Healthc. 1(4), 1–17 (2020). Article 20

    Article  Google Scholar 

  14. Saganowski, S., et al.: Emotion recognition using wearables: a systematic literature review - work-in-progress. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, pp. 1–6 (2020). https://doi.org/10.1109/PerComWorkshops48775.2020.9156096

  15. Edwards, C., Maxwell, N.: Disability, hostility and everyday geographies of un/safety. Soc. Cult. Geogr. 24(1), 157–174 (2021). https://doi.org/10.1080/14649365.2021.1950823

    Article  Google Scholar 

  16. Jutila, M., Rivas, H., Karhula, P., Pantsar-Syväniemi, S.: Implementation of a wearable sensor vest for the safety and well-being of children. Procedia Comput. Sci. 32, 888–893 (2014). https://doi.org/10.1016/j.procs.2014.05.507. ISSN 1877-0509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Comai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salice, F., Magosso, E., Re, S., Golino, M., Masciadri, A., Comai, S. (2024). BRAVE: Bio Responsive Alert VEst. In: Miesenberger, K., Peňáz, P., Kobayashi, M. (eds) Computers Helping People with Special Needs. ICCHP 2024. Lecture Notes in Computer Science, vol 14751. Springer, Cham. https://doi.org/10.1007/978-3-031-62849-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62849-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62848-1

  • Online ISBN: 978-3-031-62849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics