Skip to main content

sEMG-Based Gesture Recognition with Spiking Neural Networks on Low-Power FPGA

  • Conference paper
  • First Online:
Design and Architectures for Signal and Image Processing (DASIP 2024)

Abstract

Classification of surface electromyographic (sEMG) signals for the precise identification of hand gestures is a crucial area in the advancement of complex prosthetic devices and human-machine interfaces. This study presents a real-time sEMG classification system, exploiting a Spiking Neural Network (SNN) to distinguish among twelve distinct hand gestures. The system is implemented on a Lattice iCE40-UltraPlus FPGA, explicitly designed for low-power applications. Evaluation on the NinaPro DB5 dataset confirms an accuracy of 85.6%, demonstrating the model’s effectiveness. The power consumption for this architecture is approximately 1.7 mW, leveraging the inherent energy efficiency of SNNs for low-power classification.

This work was supported by Key Digital Technologies Joint Undertaking (KDT JU) in “EdgeAI Edge AI Technologies for Optimised Performance Embedded Processing” project, grant agreement No 101097300.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lava-DL SLAYER (2023). https://lava-nc.org/lava-lib-di/slayer/slayer.html. Accessed 8 Jan 2023

  2. LAVA-NC (2023). https://lava-nc.org/index.html. Accessed Jan 8 2023

  3. Behrenbeck, J., et al.: Classification and regression of spatio-temporal signals using NeuCube and its realization on spinnaker neuromorphic hardware. J. Neural Eng. 16(2), 026014 (2019)

    Article  Google Scholar 

  4. Cheng, L., Liu, Y., Hou, Z.G., Tan, M., Du, D., Fei, M.: A rapid spiking neural network approach with an application on hand gesture recognition. IEEE Trans. Cogn. Dev. Syst. 13(1), 151–161 (2021). https://doi.org/10.1109/TCDS.2019.2918228

    Article  Google Scholar 

  5. Davies, M., et al.: Advancing neuromorphic computing with Loihi: a survey of results and outlook. Proc. IEEE 109(5), 911–934 (2021). https://doi.org/10.1109/JPROC.2021.3067593

    Article  Google Scholar 

  6. Furber, S.B., et al.: Overview of the spinnaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467 (2013). https://doi.org/10.1109/TC.2012.142

    Article  MathSciNet  Google Scholar 

  7. Leone, G., Raffo, L., Meloni, P.: On-FPGA spiking neural networks for end-to-end neural decoding. IEEE Access 11, 41387–41399 (2023). https://doi.org/10.1109/ACCESS.2023.3269598

    Article  Google Scholar 

  8. Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., Atzori, M.: Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS One 12(10), e0186132 (2017). https://doi.org/10.1371/journal.pone.0186132

  9. Shrestha, S.B., Orchard, G.: Slayer: spike layer error reassignment in time. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 1419–1428. NIPS’18, Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  10. Tanzarella, S., Iacono, M., Donati, E., Farina, D., Bartolozzi, C.: Neuromorphic decoding of spinal motor neuron behaviour during natural hand movements for a new generation of wearable neural interfaces. IEEE Trans. Neural Syst. Rehabili. Eng. 31, 3035–3046 (2023). https://doi.org/10.1109/TNSRE.2023.3295658

  11. Vitale, A., Donati, E., Germann, R., Magno, M.: Neuromorphic edge computing for biomedical applications: gesture classification using EMG signals. IEEE Sens. J. 22(20), 19490–19499 (2022). https://doi.org/10.1109/JSEN.2022.3194678

    Article  Google Scholar 

  12. Xu, M., Chen, X., Sun, A., Zhang, X., Chen, X.: A novel event-driven spiking convolutional neural network for electromyography pattern recognition. IEEE Trans. Biomed. Eng. 70(9), 2604–2615 (2023). https://doi.org/10.1109/TBME.2023.3258606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Antonio Scrugli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scrugli, M.A., Leone, G., Busia, P., Meloni, P. (2024). sEMG-Based Gesture Recognition with Spiking Neural Networks on Low-Power FPGA. In: Dias, T., Busia, P. (eds) Design and Architectures for Signal and Image Processing. DASIP 2024. Lecture Notes in Computer Science, vol 14622. Springer, Cham. https://doi.org/10.1007/978-3-031-62874-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62874-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62873-3

  • Online ISBN: 978-3-031-62874-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics