Abstract
Although large radio-telescope arrays allow us to observe the celestial sphere with an unprecedented level of detail and sensitivity, additional antennas drastically increases the cost of processing and storing their data, complicating the design of computing hardware. Our overall goal is to provide a system, which we term SimSDP, to aid in their design. It will achieve this by providing resource usage estimations for some given imaging pipeline and hardware architecture, allowing for more informed decisions when building the production systems. We lay the groundworks in this paper by presenting and validating an initial system that implements three different imaging pipelines. We find that in most cases, our system is able to accurately estimate the scaling across both algorithmic parameters as well as parallelization when compared to measured data, with errors roughly in the 1–5% range, demonstrating its ability to inform design decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ammanouil, R., Ferrari, A., Mary, D., Ferrari, C., Loi, F.: A parallel and automatically tuned algorithm for multispectral image deconvolution. Mon. Not. R. Astron. Soc. 490(1), 37–49 (2019). https://doi.org/10.1093/mnras/stz2193
Bean, B.E.A.: CASA, the Common Astronomy Software Applications for Radio Astronomy. Publicat. Astronomical Soc. Pacific 134(1041), 114501 (2022). https://doi.org/10.1088/1538-3873/ac9642
Bhatnagar, S., Cornwell, T.J., Golap, K., Uson, J.M.: Correcting direction-dependent gains in the deconvolution of radio interferometric images. Astronomy Astrophys. 487(1), 419–429 (2008). https://doi.org/10.1051/0004-6361:20079284
Carrillo, R.E., McEwen, J.D., Wiaux, Y.: PURIFY: a new approach to radio-interferometric imaging. Mon. Not. R. Astron. Soc. 439(4), 3591–3604 (2014). https://doi.org/10.1093/mnras/stu202
Clark, B.: An efficient implementation of the algorithm ’CLEAN’. Astronomy Astrophys. 89, 377 (1980)
Cornwell, T.J., Voronkov, M.A., Humphreys, B.: Wide field imaging for the square kilometre array, San Diego, California, USA, p. 85000L (Oct 2012). https://doi.org/10.1117/12.929336
Cornwell, T.J.: Multiscale clean deconvolution of radio synthesis images. IEEE J. Selected Topics Signal Process. 2(5), 793–801 (2008). https://doi.org/10.1109/JSTSP.2008.2006388
Cornwell, T.J., Evans, K.F.: A simple maximum entropy deconvolution algorithm. Astronomy Astrophys. 143, 77–83 (1985), (ISSN 0004-6361)
Cornwell, T.J., Golap, K., Bhatnagar, S.: The noncoplanar baselines effect in radio interferometry: The W-projection algorithm. IEEE J. Selected Topics Signal Process. 2(5), 647–657 (2008). https://doi.org/10.1109/JSTSP.2008.2005290
Cornwell, T.J., Perley, R.A.: Radio-interferometric imaging of very large fields-the problem of non-coplanar arrays. Astronomy Astrophys. 261, 353–364 (1992)
Cornwell, T.J., Wortmann, P., Nikolic, B., Wang, F., Stolyarov, V.: Radio astronomy simulation, calibration and imaging library (2020)
Högbom, J.A.: Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy Astrophys. Suppl. 15, 417 (1974)
Miomandre, H., et al.: Demonstrating the SPIDER Runtime for Reconfigurable Dataflow Graphs Execution onto a DMA-based Manycore Processor. In: IEEE International Workshop on Signal Processing Systems (Oct 2017), poster
Monnier, N., Orieux, F., Gac, N., Tasse, C., Raffin, E., Guibert, D.: Fast Sky to Sky Interpolation for Radio Interferometric Imaging. In: 2022 IEEE International Conference on Image Processing (ICIP). pp. 1571–1575. IEEE, Bordeaux, France (Oct 2022). https://doi.org/10.1109/ICIP46576.2022.9897317
Offringa, A.R.E.A.: wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices Royal Astronomical Soc. 444(1), 606–619 (2014). https://doi.org/10.1093/mnras/stu1368
Ord, S.M., et al., M.: Interferometric Imaging with the 32 Element Murchison Wide-Field Array. Publicat. Astronomical Soc. Pacific 122(897), 1353–1366 (2010). https://doi.org/10.1086/657160
Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40. IEEE, Milano, Italy (Sep 2014). https://doi.org/10.1109/EDERC.2014.6924354
Rau, U., Cornwell, T.J.: A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astronomy Astrophys. 532, A71 (2011). https://doi.org/10.1051/0004-6361/201117104
Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, Austin, Texas, pp. 126–132 (2015). https://doi.org/10.25080/Majora-7b98e3ed-013
Schwab, F.R.: Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry. Astron. J. 89, 1076 (1984). https://doi.org/10.1086/113605
Smirnov, O.M.: Revisiting the radio interferometer measurement equation: I. A full-sky Jones formalism. Astronomy Astrophy. 527, A106 (2011). https://doi.org/10.1051/0004-6361/201016082
Van Der Tol, S., Veenboer, B., Offringa, A.R.: Image Domain Gridding: a fast method for convolutional resampling of visibilities. Astronomy Astrophys. 616, A27 (2018). https://doi.org/10.1051/0004-6361/201832858
Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M.M., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. Mon. Not. R. Astron. Soc. 395(3), 1733–1742 (2009). https://doi.org/10.1111/j.1365-2966.2009.14665.x
Wu, C., et al.: DALiuGE: a graph execution framework for harnessing the astronomical data deluge. Astronomy Comput. 20, 1–15 (2017). https://doi.org/10.1016/j.ascom.2017.03.007
Ye, H., Gull, S.F., Tan, S.M., Nikolic, B.: High accuracy wide-field imaging method in radio interferometry. Mon. Not. R. Astron. Soc. 510(3), 4110–4125 (2022). https://doi.org/10.1093/mnras/stab3548
Acknowledgements
This work was supported by DARK-ERA (ANR-20-CE46-0001-01)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, S., Gac, N., Miomandre, H., Nezan, JF., Desnos, K., Orieux, F. (2024). An Initial Framework for Prototyping Radio-Interferometric Imaging Pipelines. In: Dias, T., Busia, P. (eds) Design and Architectures for Signal and Image Processing. DASIP 2024. Lecture Notes in Computer Science, vol 14622. Springer, Cham. https://doi.org/10.1007/978-3-031-62874-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-62874-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62873-3
Online ISBN: 978-3-031-62874-0
eBook Packages: Computer ScienceComputer Science (R0)