Skip to main content

An Initial Framework for Prototyping Radio-Interferometric Imaging Pipelines

  • Conference paper
  • First Online:
Design and Architectures for Signal and Image Processing (DASIP 2024)

Abstract

Although large radio-telescope arrays allow us to observe the celestial sphere with an unprecedented level of detail and sensitivity, additional antennas drastically increases the cost of processing and storing their data, complicating the design of computing hardware. Our overall goal is to provide a system, which we term SimSDP, to aid in their design. It will achieve this by providing resource usage estimations for some given imaging pipeline and hardware architecture, allowing for more informed decisions when building the production systems. We lay the groundworks in this paper by presenting and validating an initial system that implements three different imaging pipelines. We find that in most cases, our system is able to accurately estimate the scaling across both algorithmic parameters as well as parallelization when compared to measured data, with errors roughly in the 1–5% range, demonstrating its ability to inform design decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.com/igorawratu/an-initial-framework-for-prototyping-radio-inteferometric-imaging-pipelines.

  2. 2.

    https://gitlab.com/ska-telescope/sim/sim-datasets.

References

  1. Ammanouil, R., Ferrari, A., Mary, D., Ferrari, C., Loi, F.: A parallel and automatically tuned algorithm for multispectral image deconvolution. Mon. Not. R. Astron. Soc. 490(1), 37–49 (2019). https://doi.org/10.1093/mnras/stz2193

    Article  Google Scholar 

  2. Bean, B.E.A.: CASA, the Common Astronomy Software Applications for Radio Astronomy. Publicat. Astronomical Soc. Pacific 134(1041), 114501 (2022). https://doi.org/10.1088/1538-3873/ac9642

  3. Bhatnagar, S., Cornwell, T.J., Golap, K., Uson, J.M.: Correcting direction-dependent gains in the deconvolution of radio interferometric images. Astronomy Astrophys. 487(1), 419–429 (2008). https://doi.org/10.1051/0004-6361:20079284

    Article  Google Scholar 

  4. Carrillo, R.E., McEwen, J.D., Wiaux, Y.: PURIFY: a new approach to radio-interferometric imaging. Mon. Not. R. Astron. Soc. 439(4), 3591–3604 (2014). https://doi.org/10.1093/mnras/stu202

    Article  Google Scholar 

  5. Clark, B.: An efficient implementation of the algorithm ’CLEAN’. Astronomy Astrophys. 89, 377 (1980)

    Google Scholar 

  6. Cornwell, T.J., Voronkov, M.A., Humphreys, B.: Wide field imaging for the square kilometre array, San Diego, California, USA, p. 85000L (Oct 2012). https://doi.org/10.1117/12.929336

  7. Cornwell, T.J.: Multiscale clean deconvolution of radio synthesis images. IEEE J. Selected Topics Signal Process. 2(5), 793–801 (2008). https://doi.org/10.1109/JSTSP.2008.2006388

    Article  Google Scholar 

  8. Cornwell, T.J., Evans, K.F.: A simple maximum entropy deconvolution algorithm. Astronomy Astrophys. 143, 77–83 (1985), (ISSN 0004-6361)

    Google Scholar 

  9. Cornwell, T.J., Golap, K., Bhatnagar, S.: The noncoplanar baselines effect in radio interferometry: The W-projection algorithm. IEEE J. Selected Topics Signal Process. 2(5), 647–657 (2008). https://doi.org/10.1109/JSTSP.2008.2005290

    Article  Google Scholar 

  10. Cornwell, T.J., Perley, R.A.: Radio-interferometric imaging of very large fields-the problem of non-coplanar arrays. Astronomy Astrophys. 261, 353–364 (1992)

    Google Scholar 

  11. Cornwell, T.J., Wortmann, P., Nikolic, B., Wang, F., Stolyarov, V.: Radio astronomy simulation, calibration and imaging library (2020)

    Google Scholar 

  12. Högbom, J.A.: Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy Astrophys. Suppl. 15, 417 (1974)

    Google Scholar 

  13. Miomandre, H., et al.: Demonstrating the SPIDER Runtime for Reconfigurable Dataflow Graphs Execution onto a DMA-based Manycore Processor. In: IEEE International Workshop on Signal Processing Systems (Oct 2017), poster

    Google Scholar 

  14. Monnier, N., Orieux, F., Gac, N., Tasse, C., Raffin, E., Guibert, D.: Fast Sky to Sky Interpolation for Radio Interferometric Imaging. In: 2022 IEEE International Conference on Image Processing (ICIP). pp. 1571–1575. IEEE, Bordeaux, France (Oct 2022). https://doi.org/10.1109/ICIP46576.2022.9897317

  15. Offringa, A.R.E.A.: wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices Royal Astronomical Soc. 444(1), 606–619 (2014). https://doi.org/10.1093/mnras/stu1368

  16. Ord, S.M., et al., M.: Interferometric Imaging with the 32 Element Murchison Wide-Field Array. Publicat. Astronomical Soc. Pacific 122(897), 1353–1366 (2010). https://doi.org/10.1086/657160

  17. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40. IEEE, Milano, Italy (Sep 2014). https://doi.org/10.1109/EDERC.2014.6924354

  18. Rau, U., Cornwell, T.J.: A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astronomy Astrophys. 532, A71 (2011). https://doi.org/10.1051/0004-6361/201117104

    Article  Google Scholar 

  19. Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, Austin, Texas, pp. 126–132 (2015). https://doi.org/10.25080/Majora-7b98e3ed-013

  20. Schwab, F.R.: Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry. Astron. J. 89, 1076 (1984). https://doi.org/10.1086/113605

    Article  Google Scholar 

  21. Smirnov, O.M.: Revisiting the radio interferometer measurement equation: I. A full-sky Jones formalism. Astronomy Astrophy. 527, A106 (2011). https://doi.org/10.1051/0004-6361/201016082

  22. Van Der Tol, S., Veenboer, B., Offringa, A.R.: Image Domain Gridding: a fast method for convolutional resampling of visibilities. Astronomy Astrophys. 616, A27 (2018). https://doi.org/10.1051/0004-6361/201832858

    Article  Google Scholar 

  23. Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M.M., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. Mon. Not. R. Astron. Soc. 395(3), 1733–1742 (2009). https://doi.org/10.1111/j.1365-2966.2009.14665.x

    Article  Google Scholar 

  24. Wu, C., et al.: DALiuGE: a graph execution framework for harnessing the astronomical data deluge. Astronomy Comput. 20, 1–15 (2017). https://doi.org/10.1016/j.ascom.2017.03.007

  25. Ye, H., Gull, S.F., Tan, S.M., Nikolic, B.: High accuracy wide-field imaging method in radio interferometry. Mon. Not. R. Astron. Soc. 510(3), 4110–4125 (2022). https://doi.org/10.1093/mnras/stab3548

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DARK-ERA (ANR-20-CE46-0001-01)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunrise Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Gac, N., Miomandre, H., Nezan, JF., Desnos, K., Orieux, F. (2024). An Initial Framework for Prototyping Radio-Interferometric Imaging Pipelines. In: Dias, T., Busia, P. (eds) Design and Architectures for Signal and Image Processing. DASIP 2024. Lecture Notes in Computer Science, vol 14622. Springer, Cham. https://doi.org/10.1007/978-3-031-62874-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62874-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62873-3

  • Online ISBN: 978-3-031-62874-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics