Skip to main content

Indirect Flow-Shop Coding Using Rank: Application to Indirect QAOA

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14753 ))

Included in the following conference series:

  • 366 Accesses

Abstract

The Flow-Shop Scheduling Problem (FSSP) is one of the most famous scheduling problems. The Flow-Shop scheduling problem is a disjunctive problem, meaning that a solution is fully described by an oriented disjunctive graph where the earliest starting times are computed with a longest path algorithm. We propose a new approach based on Quantum Approximate Optimization Algorithm (QAOA) to find high quality solutions to FSSP instances using a vector representation. This approach permits to solve the well-known Carlier’s instances with 64 operations to schedule. All the experiments have been achieved using the Qiskit library and carried on the IBM simulator. Presently, quantum methods cannot compete with classical ones because we lack quantum computers capable of solving large instances, and we have yet to figure out how to integrate the vast body of research results accumulated in flow-shop resolution over the last few decades into quantum algorithms. The ability of quantum approaches to effectively solve optimization problems in the future depends both on technical advancements in quantum machines and on the capacity to incorporate theoretical findings from scheduling into quantum optimization strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S., Seth, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976)

    Article  MathSciNet  Google Scholar 

  2. Roy, B., Sussmann, B.: Les problèmes d’ordonnancement avec contraintes disjunctives. In: Note DS N°9 bis. SEMA, Paris (1964)

    Google Scholar 

  3. Cheng, A., Gen, M., Tsumjimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms – representations. Comput. Ind. Eng. 30(4), 983–997 (1996)

    Article  Google Scholar 

  4. Bourreau, E., Fleury, G., Lacomme, P.: Indirect quantum approximate optimization algorithms: application to the TSP (2023). arXiv:2311.03294

  5. Knuth, D.: The Art of Computer Programming - Volume 3. Sorting and Searching. 2nd edn. Addison-Wesley, Reading (1981)

    Google Scholar 

  6. Laisant, C.A.: Sur la numération factorielle, application aux permutations. Bull. de la S.M.F. tome 16, 176–173 (1888)

    Google Scholar 

  7. Mantaci, R., Rakotondrajao, F.: A permutation representation that knows what Eulerian means. Discrete Math. Theor. Comput. Sci. 4, 101–108 (2001)

    MathSciNet  Google Scholar 

  8. Hadfield, S.: Quantum algorithms for scientific computing and approximate optimization. Submitted in partial fulfillment of the requirements for the degree of doctor of Philosophy in the Graduate School of Arts and Sciences. Columbia University (2018)

    Google Scholar 

  9. Chassaing, M., Fontanel, J., Lacomme, P., Ren, L., Tchernev, N., Villechenon, P.: A GRASP×ELS approach for the job-shop with a web service paradigm packaging. Expert Syst. Appl. 41(2), 544–562 (2014)

    Article  Google Scholar 

  10. Anunay, F.A., Pandey, A., Kumar, S.K.: Mathematical models for multi-stage hybrid assembly flow-shop scheduling with preventive maintenance and release times. Comput. Ind. Eng. 186, 109719 (2023)

    Google Scholar 

  11. Khatami, M., Salehipour, A., Cheng, T.C.E.: Flow-shop scheduling with exact delays to minimize makespan. Comput. Ind. Eng. 183, 109456 (2023)

    Google Scholar 

  12. Geng, X.-N., Sun, X., Wang, J., Pan, L.: Scheduling on proportionate flow shop with job rejection and common due date assignment. Comput. Ind. Eng. 181, 109317 (2023)

    Google Scholar 

  13. Mraihi, T., Driss, O.B., EL-Haouzi, H.B.: Distributed permutation flow shop scheduling problem with worker flexibility: review, trends and model proposition. Expert Syst. Appl. 238, 121947 (2023)

    Google Scholar 

  14. Neufeld, J.S., Schulz, S., Buscher, U.: A systematic review of multi-objective hybrid flow shop scheduling. Eur. J. Oper. Res. 309, 1–23 (2023)

    Google Scholar 

  15. Yenisey, M.M., Yagmahan, B.: Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends. Omega 45, 119–135 (2014)

    Article  Google Scholar 

  16. Carlier, J.: Ordonnancements à contraintes disjonctives. RAIRO. Recherche opérationnelle. 12(4), 333–350 (1978)

    MathSciNet  Google Scholar 

  17. Ren, J., Ye, C., Yang, F.: Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network. Alex. Eng. J. 60, 2787–2800 (2021)

    Article  Google Scholar 

  18. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling (2016). arXiv:1506.08479v2

  19. Carugno, C., Dacrema, M.F., Cremonesi, P.: Evaluating the job shop scheduling problem on a D-wave quantum annealer. Sci. Rep. 12, 6539 (2022)

    Article  Google Scholar 

  20. Schworm, P., Wu, X., Glatt, M., Aurich, J.C.: Solving fexible job shop scheduling problems in manufacturing with Quantum Annealing. Prod. Eng. Res. Devel. 17, 105–115 (2023)

    Article  Google Scholar 

  21. Kurowski, K., Pecynaa, T., Slysz, M., Rózycki, R., Waligóra, G., Weglarz, J.: Application of quantum approximate optimization algorithm to job shop scheduling problem. Eur. J. Oper. Res. 310(2), 518–528 (2023)

    Article  MathSciNet  Google Scholar 

  22. Wilson, J.M.: Alternative formulations of a flow-shop scheduling problem. J. Opl. Res. Soc. 40(4), 395–399 (1989)

    Article  Google Scholar 

  23. Seda, M.: Mathematical models of flow-shop and job-shop scheduling problems. World Academy of Science, Engineering and Technology. 31 (2007)

    Google Scholar 

  24. Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8, 219–223 (1960)

    Article  MathSciNet  Google Scholar 

  25. Wagner, H.M.: An integer linear-programming model for machine scheduling. Nav. Res. Logist. Q. 6(2), 131–140 (1959)

    Article  MathSciNet  Google Scholar 

  26. Feo, T.A., Resende, M.G.C.: Greedy adaptative search procedures. J. Glob. Optim. 6(2), 109–133 (1995)

    Article  Google Scholar 

  27. Wolf, S., Merz, P.: Evolutionary local search for the super-peer selection problem and the p-hub median problem. In: Bartz-Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lacomme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fleury, G., Lacomme, P., Prodhon, C. (2024). Indirect Flow-Shop Coding Using Rank: Application to Indirect QAOA. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14753 . Springer, Cham. https://doi.org/10.1007/978-3-031-62912-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62912-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62911-2

  • Online ISBN: 978-3-031-62912-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics