Skip to main content

A Continuous-GRASP Random-Key Optimizer

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Abstract

This paper introduces a problem-independent GRASP metaheuristic for combinatorial optimization implemented as a random-key optimizer (RKO). CGRASP, or continuous GRASP, is an extension of the GRASP metaheuristic for optimization of a general objective function in the continuous unit hypercube. The novel approach extends CGRASP using random keys for encoding solutions of the optimization problem in the unit hypercube and a decoder for evaluating encoded solutions. This random-key GRASP combines a universal optimizer component with a specific decoder for each problem. As a demonstration, it was tested on five NP-hard problems: Traveling salesman problem (TSP); Tree hub location problem in graphs (THLP); Steiner triple set covering problem (STCP); Node capacitated graph partitioning problem (NCGPP); and Job sequencing and tool switching problem (SSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrade, C.E., Toso, R.F., Gonçalves, J.F., Resende, M.G.: The multi-parent biased random-key genetic algorithm with implicit path-relinking and its real-world applications. Eur. J. Oper. Res. 289(1), 17–30 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Article  Google Scholar 

  3. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

    Article  MathSciNet  Google Scholar 

  4. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6(1), 109–133 (1995)

    Article  MathSciNet  Google Scholar 

  5. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heurist. 17(1), 487–525 (2011)

    Article  Google Scholar 

  6. Hirsch, M., Meneses, C., Pardalos, P., Resende, M.: Global optimization by continuous GRASP. Optim. Lett. 1, 201–212 (2007)

    Article  MathSciNet  Google Scholar 

  7. Hirsch, M., Pardalos, P., Resende, M.: Speeding up continuous GRASP. Eur. J. Oper. Res. 205, 507–521 (2010)

    Article  Google Scholar 

  8. Londe, M.A., Pessoa, L.S., Andrade, C.E., Resende, M.G.C.: Biased random-key genetic algorithms: a review. Technical report 2312.00961, arXiv (2023)

    Google Scholar 

  9. Mangussi, A.D., et al.: Meta-heurísticas via chaves aleatórias aplicadas ao problema de localização de hubs em árvore. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL. Galoá, São José dos Campos (2023). https://proceedings.science/sbpo-2023/trabalhos/meta-heuristicas-via-chaves-aleatorias-aplicadas-ao-problema-de-localizacao-de-h?lang=pt-br

  10. Oliveira, B.B., Carravilla, M.A., Oliveira, J.F., Resende, M.G.C.: A C++ application programming interface for co-evolutionary biased random-key genetic algorithms for solution and scenario generation. Optim. Methods Softw. 37(3), 1065–1086 (2022)

    Article  MathSciNet  Google Scholar 

  11. Resende, M.G.C., Ribeiro, C.C.: Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4

    Book  Google Scholar 

  12. Schuetz, M., et al.: Optimization of robot trajectory planning with nature-inspired and hybrid quantum algorithms. Phys. Rev. Appl. 18(5) (2022)

    Google Scholar 

  13. Silva, R.M.A., Resende, M.G.C., Pardalos, P.M., Hirsch, M.J.: A Python/C library for bound-constrained global optimization with continuous GRASP. Optim. Lett. 7, 967–984 (2013)

    Article  MathSciNet  Google Scholar 

  14. Toso, R., Resende, M.: A C++ application programming interface for biased random-key genetic algorithms. Optim. Methods Softw. 30(1), 81–93 (2015)

    Article  Google Scholar 

  15. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. A 233(1), 395–406 (1996)

    Article  Google Scholar 

  16. Xiang, Y., Sun, D., Fan, W., Gong, X.: Generalized simulated annealing algorithm and its application to the Thomson model. Phys. Lett. A 233(3), 216–220 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio G. C. Resende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaves, A.A., Resende, M.G.C., Silva, R.M.A. (2024). A Continuous-GRASP Random-Key Optimizer. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14753 . Springer, Cham. https://doi.org/10.1007/978-3-031-62912-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62912-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62911-2

  • Online ISBN: 978-3-031-62912-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics