Abstract
This paper introduces a problem-independent GRASP metaheuristic for combinatorial optimization implemented as a random-key optimizer (RKO). CGRASP, or continuous GRASP, is an extension of the GRASP metaheuristic for optimization of a general objective function in the continuous unit hypercube. The novel approach extends CGRASP using random keys for encoding solutions of the optimization problem in the unit hypercube and a decoder for evaluating encoded solutions. This random-key GRASP combines a universal optimizer component with a specific decoder for each problem. As a demonstration, it was tested on five NP-hard problems: Traveling salesman problem (TSP); Tree hub location problem in graphs (THLP); Steiner triple set covering problem (STCP); Node capacitated graph partitioning problem (NCGPP); and Job sequencing and tool switching problem (SSP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrade, C.E., Toso, R.F., Gonçalves, J.F., Resende, M.G.: The multi-parent biased random-key genetic algorithm with implicit path-relinking and its real-world applications. Eur. J. Oper. Res. 289(1), 17–30 (2021)
Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)
Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)
Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6(1), 109–133 (1995)
Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heurist. 17(1), 487–525 (2011)
Hirsch, M., Meneses, C., Pardalos, P., Resende, M.: Global optimization by continuous GRASP. Optim. Lett. 1, 201–212 (2007)
Hirsch, M., Pardalos, P., Resende, M.: Speeding up continuous GRASP. Eur. J. Oper. Res. 205, 507–521 (2010)
Londe, M.A., Pessoa, L.S., Andrade, C.E., Resende, M.G.C.: Biased random-key genetic algorithms: a review. Technical report 2312.00961, arXiv (2023)
Mangussi, A.D., et al.: Meta-heurísticas via chaves aleatórias aplicadas ao problema de localização de hubs em árvore. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL. Galoá, São José dos Campos (2023). https://proceedings.science/sbpo-2023/trabalhos/meta-heuristicas-via-chaves-aleatorias-aplicadas-ao-problema-de-localizacao-de-h?lang=pt-br
Oliveira, B.B., Carravilla, M.A., Oliveira, J.F., Resende, M.G.C.: A C++ application programming interface for co-evolutionary biased random-key genetic algorithms for solution and scenario generation. Optim. Methods Softw. 37(3), 1065–1086 (2022)
Resende, M.G.C., Ribeiro, C.C.: Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-6530-4
Schuetz, M., et al.: Optimization of robot trajectory planning with nature-inspired and hybrid quantum algorithms. Phys. Rev. Appl. 18(5) (2022)
Silva, R.M.A., Resende, M.G.C., Pardalos, P.M., Hirsch, M.J.: A Python/C library for bound-constrained global optimization with continuous GRASP. Optim. Lett. 7, 967–984 (2013)
Toso, R., Resende, M.: A C++ application programming interface for biased random-key genetic algorithms. Optim. Methods Softw. 30(1), 81–93 (2015)
Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. A 233(1), 395–406 (1996)
Xiang, Y., Sun, D., Fan, W., Gong, X.: Generalized simulated annealing algorithm and its application to the Thomson model. Phys. Lett. A 233(3), 216–220 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chaves, A.A., Resende, M.G.C., Silva, R.M.A. (2024). A Continuous-GRASP Random-Key Optimizer. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14753 . Springer, Cham. https://doi.org/10.1007/978-3-031-62912-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-62912-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62911-2
Online ISBN: 978-3-031-62912-9
eBook Packages: Computer ScienceComputer Science (R0)