Abstract
Event-interval sequences are defined as multivariate series of events that occur over time. The classification of event-interval sequences has gained increasing attention among researchers in the field of time series analysis due to their broad applicability, as for instance in healthcare and weather forecasting. This paper focuses on the optimized extraction of interpretable features from event-interval sequences to construct supervised classifiers. The current state-of-the-art is represented by e-lets, which are randomly sampled subsequences of event-intervals. We propose a new approach to interpretable classification of event-interval sequences based on sparse-lets, a novel generalization of e-lets. Our approach relies on genetic algorithms to learn sparse-lets, generating optimized and interpretable features. We evaluate the performance of our method through experiments conducted on benchmark datasets, and compare it against the state-of-the-art. Computational results show that our method is a viable competitor in terms of classification accuracy. Moreover, we show that our method generates simpler features than competing approaches, retaining only the most important information.
The Ph.D. scholarship of the author Lorenzo Bonasera is founded by Fedegari Autoclavi S.p.A. The work of the author Stefano Gualandi is part of the project NODES which has received funding from the MUR M4C2 1.5 of PNRR funded by the European Union - NextGenerationEU (Grant agreement no. ECS00000036).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We indicate through \(\lfloor \cdot \rceil \) the function that rounds input to the nearest integer.
References
Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21, 133–171 (2009)
Rebane, J., Karlsson, I., Bornemann, L., Papapetrou, P.: Smile: a feature-based temporal abstraction framework for event-interval sequence classification. Data Min. Knowl. Disc. 35, 372–399 (2021)
Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc. 29, 871–913 (2015)
Kosara, R., Miksch, S.: Visualizing complex notions of time. In: MEDINFO 2001, pp. 211–215. IOS Press (2001)
Klimov, D., Shknevsky, A., Shahar, Y.: Exploration of patterns predicting renal damage in patients with diabetes type ii using a visual temporal analysis laboratory. J. Am. Med. Inf. Assn. 22(2), 275–289 (2015)
Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: SIGMOD Record, pp. 393–404 (2008)
Pachet, F., Ramalho, G., Carrive, J.: Representing temporal musical objects and reasoning in the muses system. J. New. Music Res. 25(3), 252–275 (1996)
MichałBilski , J., Jastrzębska, A.: Costi: a new classifier for sequences of temporal intervals. In: IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2022)
Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering frequent arrangements of temporal intervals. In: Fifth IEEE Data Mining, p. 8 (2005)
Sammut, C.: Temporal classification: extending the classification paradigm to multivariate time series. PhD thesis, UNSW Sydney (2003)
Berendt, B.: Explaining preferred mental models in allen inferences with a metrical model of imagery. In: Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, pp. 489–494. Routledge (2019)
Moosavi, S., Samavatian, M.H., Nandi, A., Parthasarathy, S., Ramnath, R.: Short and long-term pattern discovery over large-scale geo-spatiotemporal data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2905–2913. Association for Computing Machinery (2019)
Pissinou, N., Radev, I., Makki, K.: Spatio-temporal modeling in video and multimedia geographic information systems. GeoInformatica 5, 375–409 (2001)
Kostakis, O., Papapetrou, P., Hollmén, J.: ARTEMIS: assessing the similarity of event-interval sequences. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 229–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_15
Kotsifakos, A., Papapetrou, P., Athitsos, V.: Ibsm: interval-based sequence matching. In: Proceedings of the SIAM International Conference on Data Mining, pp. 596–604 (2013)
Kostakis, O., Papapetrou, P.: ABIDE: querying time-evolving sequences of temporal intervals. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017. LNCS, vol. 10584, pp. 173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0_15
Mirbagheri, S.M., Hamilton, H.J.: Similarity matching of temporal event-interval sequences. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 420–425. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_43
Bornemann, L., Lecerf, J., Papapetrou, P.: STIFE: a framework for feature-based classification of sequences of temporal intervals. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_6
Mohammad Mirbagheri, S., Hamilton, H.J.: FIBS: a generic framework for classifying interval-based temporal sequences. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 301–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59065-9_24
Lee, Z., Girdzijauskas, Š, Papapetrou, P.: Z-Embedding: a spectral representation of event intervals for efficient clustering and classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 710–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_41
Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a rigorous evaluation of xai methods on time series. In: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4197–4201 (2019)
Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956 (2009)
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: a very fast (almost) deterministic transform for time series classification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 248–257 (2021)
Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)
Eads, D.R., et al.: Genetic algorithms and support vector machines for time series classification. In: Proceedings of Social Photo-optics Institute, vol. 4787, pp. 74–85. SPIE (2002)
Fern, A.: Learning Models and Formulas of a Temporal Event Logic. PhD thesis, Purdue University (2004)
Mäntyjärvi, J., Himberg, J., Kangas, P., Tuomela, U.: Sensor signal data set for exploring context recognition. In: Proceedings of 2nd International Conference on Pervasive Computing (2004)
Schmill, M., Cohen, P.: Pioneer-1 mobile robot data. UCI Machine Learning Repository (1999)
Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multivariate interval time series. Data Min. Knowl. Disc. 15, 181–215 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bonasera, L., Duma, D., Gualandi, S. (2024). Learning Sparse-Lets for Interpretable Classification of Event-interval Sequences. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-62922-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62921-1
Online ISBN: 978-3-031-62922-8
eBook Packages: Computer ScienceComputer Science (R0)