Skip to main content

Learning Sparse-Lets for Interpretable Classification of Event-interval Sequences

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Abstract

Event-interval sequences are defined as multivariate series of events that occur over time. The classification of event-interval sequences has gained increasing attention among researchers in the field of time series analysis due to their broad applicability, as for instance in healthcare and weather forecasting. This paper focuses on the optimized extraction of interpretable features from event-interval sequences to construct supervised classifiers. The current state-of-the-art is represented by e-lets, which are randomly sampled subsequences of event-intervals. We propose a new approach to interpretable classification of event-interval sequences based on sparse-lets, a novel generalization of e-lets. Our approach relies on genetic algorithms to learn sparse-lets, generating optimized and interpretable features. We evaluate the performance of our method through experiments conducted on benchmark datasets, and compare it against the state-of-the-art. Computational results show that our method is a viable competitor in terms of classification accuracy. Moreover, we show that our method generates simpler features than competing approaches, retaining only the most important information.

The Ph.D. scholarship of the author Lorenzo Bonasera is founded by Fedegari Autoclavi S.p.A. The work of the author Stefano Gualandi is part of the project NODES which has received funding from the MUR M4C2 1.5 of PNRR funded by the European Union - NextGenerationEU (Grant agreement no. ECS00000036).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We indicate through \(\lfloor \cdot \rceil \) the function that rounds input to the nearest integer.

References

  1. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Mining frequent arrangements of temporal intervals. Knowl. Inf. Syst. 21, 133–171 (2009)

    Article  Google Scholar 

  2. Rebane, J., Karlsson, I., Bornemann, L., Papapetrou, P.: Smile: a feature-based temporal abstraction framework for event-interval sequence classification. Data Min. Knowl. Disc. 35, 372–399 (2021)

    Article  MathSciNet  Google Scholar 

  3. Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc. 29, 871–913 (2015)

    Article  MathSciNet  Google Scholar 

  4. Kosara, R., Miksch, S.: Visualizing complex notions of time. In: MEDINFO 2001, pp. 211–215. IOS Press (2001)

    Google Scholar 

  5. Klimov, D., Shknevsky, A., Shahar, Y.: Exploration of patterns predicting renal damage in patients with diabetes type ii using a visual temporal analysis laboratory. J. Am. Med. Inf. Assn. 22(2), 275–289 (2015)

    Article  Google Scholar 

  6. Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for classification. In: SIGMOD Record, pp. 393–404 (2008)

    Google Scholar 

  7. Pachet, F., Ramalho, G., Carrive, J.: Representing temporal musical objects and reasoning in the muses system. J. New. Music Res. 25(3), 252–275 (1996)

    Article  Google Scholar 

  8. MichałBilski , J., Jastrzębska, A.: Costi: a new classifier for sequences of temporal intervals. In: IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2022)

    Google Scholar 

  9. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering frequent arrangements of temporal intervals. In: Fifth IEEE Data Mining, p. 8 (2005)

    Google Scholar 

  10. Sammut, C.: Temporal classification: extending the classification paradigm to multivariate time series. PhD thesis, UNSW Sydney (2003)

    Google Scholar 

  11. Berendt, B.: Explaining preferred mental models in allen inferences with a metrical model of imagery. In: Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society, pp. 489–494. Routledge (2019)

    Google Scholar 

  12. Moosavi, S., Samavatian, M.H., Nandi, A., Parthasarathy, S., Ramnath, R.: Short and long-term pattern discovery over large-scale geo-spatiotemporal data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2905–2913. Association for Computing Machinery (2019)

    Google Scholar 

  13. Pissinou, N., Radev, I., Makki, K.: Spatio-temporal modeling in video and multimedia geographic information systems. GeoInformatica 5, 375–409 (2001)

    Article  Google Scholar 

  14. Kostakis, O., Papapetrou, P., Hollmén, J.: ARTEMIS: assessing the similarity of event-interval sequences. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 229–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_15

    Chapter  Google Scholar 

  15. Kotsifakos, A., Papapetrou, P., Athitsos, V.: Ibsm: interval-based sequence matching. In: Proceedings of the SIAM International Conference on Data Mining, pp. 596–604 (2013)

    Google Scholar 

  16. Kostakis, O., Papapetrou, P.: ABIDE: querying time-evolving sequences of temporal intervals. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017. LNCS, vol. 10584, pp. 173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0_15

    Chapter  Google Scholar 

  17. Mirbagheri, S.M., Hamilton, H.J.: Similarity matching of temporal event-interval sequences. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 420–425. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_43

    Chapter  Google Scholar 

  18. Bornemann, L., Lecerf, J., Papapetrou, P.: STIFE: a framework for feature-based classification of sequences of temporal intervals. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_6

    Chapter  Google Scholar 

  19. Mohammad Mirbagheri, S., Hamilton, H.J.: FIBS: a generic framework for classifying interval-based temporal sequences. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 301–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59065-9_24

    Chapter  Google Scholar 

  20. Lee, Z., Girdzijauskas, Š, Papapetrou, P.: Z-Embedding: a spectral representation of event intervals for efficient clustering and classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 710–726. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_41

    Chapter  Google Scholar 

  21. Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a rigorous evaluation of xai methods on time series. In: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4197–4201 (2019)

    Google Scholar 

  22. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

    Article  Google Scholar 

  23. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  24. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956 (2009)

    Google Scholar 

  25. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  26. Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: a very fast (almost) deterministic transform for time series classification. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 248–257 (2021)

    Google Scholar 

  27. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)

    Article  Google Scholar 

  28. Eads, D.R., et al.: Genetic algorithms and support vector machines for time series classification. In: Proceedings of Social Photo-optics Institute, vol. 4787, pp. 74–85. SPIE (2002)

    Google Scholar 

  29. Fern, A.: Learning Models and Formulas of a Temporal Event Logic. PhD thesis, Purdue University (2004)

    Google Scholar 

  30. Mäntyjärvi, J., Himberg, J., Kangas, P., Tuomela, U.: Sensor signal data set for exploring context recognition. In: Proceedings of 2nd International Conference on Pervasive Computing (2004)

    Google Scholar 

  31. Schmill, M., Cohen, P.: Pioneer-1 mobile robot data. UCI Machine Learning Repository (1999)

    Google Scholar 

  32. Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multivariate interval time series. Data Min. Knowl. Disc. 15, 181–215 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bonasera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonasera, L., Duma, D., Gualandi, S. (2024). Learning Sparse-Lets for Interpretable Classification of Event-interval Sequences. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62922-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62921-1

  • Online ISBN: 978-3-031-62922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics