Skip to main content

Detecting \(K_{2,3}\) as an Induced Minor

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2024)

Abstract

We consider a natural generalization of chordal graphs, in which every minimal separator induces a subgraph with independence number at most 2. Such graphs can be equivalently defined as graphs that do not contain the complete bipartite graph \(K_{2,3}\) as an induced minor, that is, graphs from which \(K_{2,3}\) cannot be obtained by a sequence of edge contractions and vertex deletions.

We develop a polynomial-time algorithm for recognizing these graphs. Our algorithm relies on a characterization of \(K_{2,3}\)-induced minor-free graphs in terms of excluding particular induced subgraphs, called Truemper configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a simpler example, consider the case when \(\mathcal F\) consists of all complements of cycles.

References

  1. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp. 1–29. Springer, New York (1993). https://doi.org/10.1007/978-1-4613-8369-7_1

    Chapter  Google Scholar 

  2. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing Berge graphs. Combinatorica 25(2), 143–186 (2005). https://doi.org/10.1007/s00493-005-0012-8

    Article  MathSciNet  Google Scholar 

  3. Chudnovsky, M., Penev, I., Scott, A., Trotignon, N.: Excluding induced subdivisions of the bull and related graphs. J. Graph Theory 71(1), 49–68 (2012). https://doi.org/10.1002/JGT.20631

    Article  MathSciNet  Google Scholar 

  4. Chudnovsky, M., Seymour, P.: The three-in-a-tree problem. Combinatorica 30(4), 387–417 (2010). https://doi.org/10.1007/s00493-010-2334-4

    Article  MathSciNet  Google Scholar 

  5. Dallard, C., Milanič, M., Štorgel, K.: Treewidth versus clique number. III. Tree-independence number of graphs with a forbidden structure. J. Comb. Theory Ser. B 167, 338–391 (2024). https://doi.org/10.1016/j.jctb.2024.03.005

  6. Diot, E., Radovanović, M., Trotignon, N., Vušković, K.: The (theta, wheel)-free graphs Part I: Only-prism and only-pyramid graphs. J. Combin. Theory Ser. B 143, 123–147 (2020). https://doi.org/10.1016/j.jctb.2017.12.004

    Article  MathSciNet  Google Scholar 

  7. Diot, E., Tavenas, S., Trotignon, N.: Detecting wheels. Appl. Anal. Discrete Math. 8(1), 111–122 (2014). https://doi.org/10.2298/AADM131128023D

    Article  MathSciNet  Google Scholar 

  8. Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13(3), 266–282 (1995). https://doi.org/10.1007/BF01190507

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discret. Methods 1(2), 216–227 (1980). https://doi.org/10.1137/0601025

    Article  MathSciNet  Google Scholar 

  10. Hartinger, T.R.: New Characterizations in Structural Graph Theory: \(1\)-Perfectly Orientable Graphs, Graph Products, and the Price of Connectivity. Ph.D. thesis, University of Primorska (2017). https://www.famnit.upr.si/sl/studij/zakljucna_dela/download/532

  11. Hartinger, T.R., Milanič, M.: Partial characterizations of 1-perfectly orientable graphs. J. Graph Theory 85(2), 378–394 (2017). https://doi.org/10.1002/jgt.22067

    Article  MathSciNet  Google Scholar 

  12. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algorithmica 68(2), 312–336 (2014). https://doi.org/10.1007/s00453-012-9671-1

    Article  MathSciNet  Google Scholar 

  13. Korhonen, T., Lokshtanov, D.: Induced-minor-free graphs: Separator theorem, subexponential algorithms, and improved hardness of recognition. In: Woodruff, D.P. (ed.) Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, 7–10 January 2024, pp. 5249–5275. SIAM (2024). https://doi.org/10.1137/1.9781611977912.188

  14. Lai, K.Y., Lu, H.I., Thorup, M.: Three-in-a-tree in near linear time. In: STOC 2020—Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1279–1292. ACM, New York (2020). https://doi.org/10.1145/3357713.3384235

  15. Lovász, L.: A characterization of perfect graphs. J. Comb. Theory Ser. B 13, 95–98 (1972). https://doi.org/10.1016/0095-8956(72)90045-7

  16. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972). https://doi.org/10.1016/0012-365X(72)90006-4

    Article  MathSciNet  Google Scholar 

  17. Maffray, F., Trotignon, N.: Algorithms for perfectly contractile graphs. SIAM J. Discrete Math. 19(3), 553–574 (2005). https://doi.org/10.1137/S0895480104442522

    Article  MathSciNet  Google Scholar 

  18. Milanič, M., Penev, I., Pivač, N., Vušković, K.: Bisimplicial separators. J. Graph Theory (2024, to appear). https://doi.org/10.1002/jgt.23098

  19. Radovanović, M., Trotignon, N., Vušković, K.: The (theta, wheel)-free graphs Part II: structure theorem. J. Combin. Theory Ser. B 143, 148–184 (2020). https://doi.org/10.1016/j.jctb.2019.07.004

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nevena Pivač for helpful discussions. This work is supported in part by the Slovenian Research and Innovation Agency (I0-0035, research program P1-0285 and research projects J1-3001, J1-3002, J1-3003, J1-4008, J1-4084, N1-0102, and N1-0160, and BI-FR/22-23-PROTEUS-01), by the research program CogniCom (0013103) at the University of Primorska, by the French Fédération de Recherche ICVL (Informatique Centre-Val de Loire), by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), by Agence Nationale de la Recherche (France) under research grant ANR DIGRAPHS ANR-19-CE48-0013-01 and by H2020-MSCA-RISE project CoSP-GA No. 823748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Dallard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dallard, C., Dumas, M., Hilaire, C., Milanič, M., Perez, A., Trotignon, N. (2024). Detecting \(K_{2,3}\) as an Induced Minor. In: Rescigno, A.A., Vaccaro, U. (eds) Combinatorial Algorithms. IWOCA 2024. Lecture Notes in Computer Science, vol 14764. Springer, Cham. https://doi.org/10.1007/978-3-031-63021-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63021-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63020-0

  • Online ISBN: 978-3-031-63021-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics