Abstract
Atopic dermatitis is a common inflammatory skin disease, characterized by great heterogeneity and complexity. Its underlying causes are not yet fully understood. As a result, current therapies do not always lead to satisfactory outcomes. Very few studies have addressed the potential use of transcriptomic data and machine learning algorithms in atopic dermatitis. In this paper, we present and detail the use of machine learning models over omics data for identifying potential biomarkers to use for distinguishing non-lesional from lesional skin samples in patients with atopic dermatitis. Particularly, we identified an optimal signature that includes eight genes – FUT3, STRIP2, SMPD3, ZNF285, BTC, SUSD2, HSD11B1 and FABP7 – and obtained an AUC of 0.839 and an accuracy of 86.42%. We performed some functional analyses and concluded that some potential biomarkers interfere with the same molecular mechanisms and may be involved in atopic dermatitis. We expected to provide new insights for a deeper comprehension of the mechanisms behind the manifestation of the disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Walker, M.: Human skin through the ages. Int. J. Pharm. 622, 121850 (2022)
Lee, H.-J., Kim, M.: Skin barrier function and the microbiome. Int. J. Mol. Sci. 23 (2022)
Naseri, E., Ahmadi, A.: A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur. Polym. J. 173 (2022)
Ádám, D., Arany, J., Tóth, K.F., Tóth, B.I., Szöllősi, A.G., Oláh, A.: Opioidergic signaling - a neglected, yet potentially important player in atopic dermatitis. Int. J. Mol. Sci. 23 (2022)
International League of Dermatological Societies (ILDS): Global Report on Atopic Dermatitis 2022 (2022)
Kolb, L., Ferrer-Bruker, S.J.: Atopic Dermatitis. https://www.ncbi.nlm.nih.gov/books/NBK448071/. Accessed 8 Sept 2023
Bieber, T.: Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 21, 21–40 (2022)
Laughter, M.R., et al.: The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017. Br. J. Dermatol. 184, 304–309 (2021)
Fishbein, A.B., Silverberg, J.I., Wilson, E.J., Ong, P.Y.: Update on atopic dermatitis: diagnosis, severity assessment, and treatment selection. J. Allergy Clin. Immunol. Pract. 8, 91–101 (2020)
Ratchataswan, T., Banzon, T.M., Thyssen, J.P., Weidinger, S., Guttman-Yassky, E., Phipatanakul, W.: Biologics for treatment of atopic dermatitis: current status and future prospect. J. Allergy Clin. Immunol. Pract. 9, 1053–1065 (2021)
Chovatiya, R., Paller, A.S.: JAK inhibitors in the treatment of atopic dermatitis. J. Allergy Clin. Immunol. 148, 927–940 (2021)
Facheris, P., Jeffery, J., Del Duca, E., Guttman-Yassky, E.: The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 20, 448–474 (2023)
Ferrucci, S.M., Tavecchio, S., Marzano, A.V., Buffon, S.: Emerging systemic treatments for atopic dermatitis. Dermatol. Ther. (Heidelb). 13, 1071–1081 (2023)
Dodson, J., Lio, P.A.: Biologics and small molecule inhibitors: an update in therapies for allergic and immunologic skin diseases. Curr. Allergy Asthma Rep. 22, 183–193 (2022)
Trier, A.M., Kim, B.S.: Insights into atopic dermatitis pathogenesis lead to newly approved systemic therapies. Br. J. Dermatol. 188, 698–708 (2023)
Zhou, G., Huang, Y., Chu, M.: Clinical trials of antibody drugs in the treatments of atopic dermatitis. Front Med (Lausanne). 10 (2023)
Wu, J., Guttman-Yassky, E.: Efficacy of biologics in atopic dermatitis. Expert Opin. Biol. Ther. 20, 525–538 (2020)
Carrascosa-Carrillo, J.M., et al.: Toward precision medicine in atopic dermatitis using molecular-based approaches. Actas Dermosifiliogr. (2023)
Dyjack, N., et al.: Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2–high atopic dermatitis disease endotype. J. Allergy Clin. Immunol. 141, 1298–1309 (2018)
Renert-Yuval, Y., et al.: Biomarkers in atopic dermatitis - a review on behalf of the International Eczema Council. J. Allergy Clin. Immunol. 147, 1174-1190.e1 (2021)
Martínez, B.A., Shrotri, S., Kingsmore, K.M., Bachali, P., Grammer, A.C., Lipsky, P.E.: Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases. Sci. Adv. 8, eabn4776 (2022)
Möbus, L., et al.: Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. J. Allergy Clin. Immunol. 150, 385–395 (2022)
Zhong, Y., Qin, K., Li, L., Liu, H., Xie, Z., Zeng, K.: Identification of immunological biomarkers of atopic dermatitis by integrated analysis to determine molecular targets for diagnosis and therapy. Int. J. Gen. Med. 14, 8193–8209 (2021)
Zhou, W., Li, A., Zhang, C., Chen, Y., Li, Z., Lin, Y.: Accurate diagnosis of atopic dermatitis by applying random forest and neural networks with transcriptomic data. medRxiv (2022)
Jiang, Z., et al.: Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci. Rep. 12, 290 (2022)
Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002)
Rodriguez-Esteban, R., Jiang, X.: Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med. Genom. 10 (2017)
Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (2014)
Yang, H., et al.: Identification of key genes and mechanisms of epicardial adipose tissue in patients with diabetes through bioinformatic analysis. Front. Cardiovasc. Med. 9 (2022)
National Library of Medicine (US) - National Center for Biotechnology Information: BTC betacellulin [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/685. Accessed 26 Oct 2023
Zhu, J., Wang, Z., Chen, F.: Association of key genes and pathways with atopic dermatitis by bioinformatics analysis. Med. Sci. Monit. 25, 4353–4361 (2019)
Oláh, P., et al.: Influence of FLG loss-of-function mutations in host-microbe interactions during atopic skin inflammation. J. Dermatol. Sci. 106, 132–140 (2022)
National Library of Medicine (US) - National Center for Biotechnology Information: FUT3 fucosyltransferase 3 (Lewis blood group) [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/2525. Accessed 26 Oct 2023
Han, S.M., Binia, A., Godfrey, K.M., El-Heis, S., Cutfield, W.S.: Do human milk oligosaccharides protect against infant atopic disorders and food allergy? Nutrients. 12 (2020)
Lee, N.R., et al.: Role of 11β-hydroxysteroid dehydrogenase type 1 in the development of atopic dermatitis. Sci. Rep. 10 (2020)
Yamamoto-Hanada, K., et al.: MRNAs in skin surface lipids unveiled atopic dermatitis at 1 month. J. Eur. Acad. Dermatol. Venereol. 37, 1385–1395 (2023)
Shima, K., et al.: Non-invasive transcriptomic analysis using mRNAs in skin surface lipids obtained from children with mild-to-moderate atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 36, 1477–1485 (2022)
Ghosh, D., et al.: Multiple transcriptome data analysis reveals biologically relevant atopic dermatitis signature genes and pathways. PLoS One 10 (2015)
Mikhaylov, D., et al.: Transcriptomic profiling of tape-strips from moderate to severe atopic dermatitis patients treated with dupilumab. Dermatitis 32, S71–S80 (2021)
Doucet-Ladevèze, R., et al.: Transcriptomic analysis links eosinophilic esophagitis and atopic dermatitis. Front Pediatr. 7 (2019)
Acknowledgements
This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, and the PhD grant: 2022.12728.BD.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Duarte, A., Belo, O. (2024). A Novel Signature for Distinguishing Non-lesional from Lesional Skin of Atopic Dermatitis Based on a Machine Learning Approach. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 711. Springer, Cham. https://doi.org/10.1007/978-3-031-63211-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-63211-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63210-5
Online ISBN: 978-3-031-63211-2
eBook Packages: Computer ScienceComputer Science (R0)