Skip to main content

A Novel Signature for Distinguishing Non-lesional from Lesional Skin of Atopic Dermatitis Based on a Machine Learning Approach

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Atopic dermatitis is a common inflammatory skin disease, characterized by great heterogeneity and complexity. Its underlying causes are not yet fully understood. As a result, current therapies do not always lead to satisfactory outcomes. Very few studies have addressed the potential use of transcriptomic data and machine learning algorithms in atopic dermatitis. In this paper, we present and detail the use of machine learning models over omics data for identifying potential biomarkers to use for distinguishing non-lesional from lesional skin samples in patients with atopic dermatitis. Particularly, we identified an optimal signature that includes eight genes – FUT3, STRIP2, SMPD3, ZNF285, BTC, SUSD2, HSD11B1 and FABP7 – and obtained an AUC of 0.839 and an accuracy of 86.42%. We performed some functional analyses and concluded that some potential biomarkers interfere with the same molecular mechanisms and may be involved in atopic dermatitis. We expected to provide new insights for a deeper comprehension of the mechanisms behind the manifestation of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Https://www.ncbi.nlm.nih.gov/geo/

  2. 2.

    Https://maayanlab.cloud/enrichr/

References

  1. Walker, M.: Human skin through the ages. Int. J. Pharm. 622, 121850 (2022)

    Article  Google Scholar 

  2. Lee, H.-J., Kim, M.: Skin barrier function and the microbiome. Int. J. Mol. Sci. 23 (2022)

    Google Scholar 

  3. Naseri, E., Ahmadi, A.: A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur. Polym. J. 173 (2022)

    Google Scholar 

  4. Ádám, D., Arany, J., Tóth, K.F., Tóth, B.I., Szöllősi, A.G., Oláh, A.: Opioidergic signaling - a neglected, yet potentially important player in atopic dermatitis. Int. J. Mol. Sci. 23 (2022)

    Google Scholar 

  5. International League of Dermatological Societies (ILDS): Global Report on Atopic Dermatitis 2022 (2022)

    Google Scholar 

  6. Kolb, L., Ferrer-Bruker, S.J.: Atopic Dermatitis. https://www.ncbi.nlm.nih.gov/books/NBK448071/. Accessed 8 Sept 2023

  7. Bieber, T.: Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 21, 21–40 (2022)

    Article  Google Scholar 

  8. Laughter, M.R., et al.: The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017. Br. J. Dermatol. 184, 304–309 (2021)

    Article  Google Scholar 

  9. Fishbein, A.B., Silverberg, J.I., Wilson, E.J., Ong, P.Y.: Update on atopic dermatitis: diagnosis, severity assessment, and treatment selection. J. Allergy Clin. Immunol. Pract. 8, 91–101 (2020)

    Article  Google Scholar 

  10. Ratchataswan, T., Banzon, T.M., Thyssen, J.P., Weidinger, S., Guttman-Yassky, E., Phipatanakul, W.: Biologics for treatment of atopic dermatitis: current status and future prospect. J. Allergy Clin. Immunol. Pract. 9, 1053–1065 (2021)

    Article  Google Scholar 

  11. Chovatiya, R., Paller, A.S.: JAK inhibitors in the treatment of atopic dermatitis. J. Allergy Clin. Immunol. 148, 927–940 (2021)

    Article  Google Scholar 

  12. Facheris, P., Jeffery, J., Del Duca, E., Guttman-Yassky, E.: The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 20, 448–474 (2023)

    Article  Google Scholar 

  13. Ferrucci, S.M., Tavecchio, S., Marzano, A.V., Buffon, S.: Emerging systemic treatments for atopic dermatitis. Dermatol. Ther. (Heidelb). 13, 1071–1081 (2023)

    Article  Google Scholar 

  14. Dodson, J., Lio, P.A.: Biologics and small molecule inhibitors: an update in therapies for allergic and immunologic skin diseases. Curr. Allergy Asthma Rep. 22, 183–193 (2022)

    Article  Google Scholar 

  15. Trier, A.M., Kim, B.S.: Insights into atopic dermatitis pathogenesis lead to newly approved systemic therapies. Br. J. Dermatol. 188, 698–708 (2023)

    Article  Google Scholar 

  16. Zhou, G., Huang, Y., Chu, M.: Clinical trials of antibody drugs in the treatments of atopic dermatitis. Front Med (Lausanne). 10 (2023)

    Google Scholar 

  17. Wu, J., Guttman-Yassky, E.: Efficacy of biologics in atopic dermatitis. Expert Opin. Biol. Ther. 20, 525–538 (2020)

    Article  Google Scholar 

  18. Carrascosa-Carrillo, J.M., et al.: Toward precision medicine in atopic dermatitis using molecular-based approaches. Actas Dermosifiliogr. (2023)

    Google Scholar 

  19. Dyjack, N., et al.: Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2–high atopic dermatitis disease endotype. J. Allergy Clin. Immunol. 141, 1298–1309 (2018)

    Article  Google Scholar 

  20. Renert-Yuval, Y., et al.: Biomarkers in atopic dermatitis - a review on behalf of the International Eczema Council. J. Allergy Clin. Immunol. 147, 1174-1190.e1 (2021)

    Article  Google Scholar 

  21. Martínez, B.A., Shrotri, S., Kingsmore, K.M., Bachali, P., Grammer, A.C., Lipsky, P.E.: Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases. Sci. Adv. 8, eabn4776 (2022)

    Google Scholar 

  22. Möbus, L., et al.: Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. J. Allergy Clin. Immunol. 150, 385–395 (2022)

    Article  Google Scholar 

  23. Zhong, Y., Qin, K., Li, L., Liu, H., Xie, Z., Zeng, K.: Identification of immunological biomarkers of atopic dermatitis by integrated analysis to determine molecular targets for diagnosis and therapy. Int. J. Gen. Med. 14, 8193–8209 (2021)

    Article  Google Scholar 

  24. Zhou, W., Li, A., Zhang, C., Chen, Y., Li, Z., Lin, Y.: Accurate diagnosis of atopic dermatitis by applying random forest and neural networks with transcriptomic data. medRxiv (2022)

    Google Scholar 

  25. Jiang, Z., et al.: Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci. Rep. 12, 290 (2022)

    Article  Google Scholar 

  26. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002)

    Article  Google Scholar 

  27. Rodriguez-Esteban, R., Jiang, X.: Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med. Genom. 10 (2017)

    Google Scholar 

  28. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (2014)

    Google Scholar 

  29. Yang, H., et al.: Identification of key genes and mechanisms of epicardial adipose tissue in patients with diabetes through bioinformatic analysis. Front. Cardiovasc. Med. 9 (2022)

    Google Scholar 

  30. National Library of Medicine (US) - National Center for Biotechnology Information: BTC betacellulin [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/685. Accessed 26 Oct 2023

  31. Zhu, J., Wang, Z., Chen, F.: Association of key genes and pathways with atopic dermatitis by bioinformatics analysis. Med. Sci. Monit. 25, 4353–4361 (2019)

    Article  Google Scholar 

  32. Oláh, P., et al.: Influence of FLG loss-of-function mutations in host-microbe interactions during atopic skin inflammation. J. Dermatol. Sci. 106, 132–140 (2022)

    Article  Google Scholar 

  33. National Library of Medicine (US) - National Center for Biotechnology Information: FUT3 fucosyltransferase 3 (Lewis blood group) [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/2525. Accessed 26 Oct 2023

  34. Han, S.M., Binia, A., Godfrey, K.M., El-Heis, S., Cutfield, W.S.: Do human milk oligosaccharides protect against infant atopic disorders and food allergy? Nutrients. 12 (2020)

    Google Scholar 

  35. Lee, N.R., et al.: Role of 11β-hydroxysteroid dehydrogenase type 1 in the development of atopic dermatitis. Sci. Rep. 10 (2020)

    Google Scholar 

  36. Yamamoto-Hanada, K., et al.: MRNAs in skin surface lipids unveiled atopic dermatitis at 1 month. J. Eur. Acad. Dermatol. Venereol. 37, 1385–1395 (2023)

    Article  Google Scholar 

  37. Shima, K., et al.: Non-invasive transcriptomic analysis using mRNAs in skin surface lipids obtained from children with mild-to-moderate atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 36, 1477–1485 (2022)

    Article  Google Scholar 

  38. Ghosh, D., et al.: Multiple transcriptome data analysis reveals biologically relevant atopic dermatitis signature genes and pathways. PLoS One 10 (2015)

    Google Scholar 

  39. Mikhaylov, D., et al.: Transcriptomic profiling of tape-strips from moderate to severe atopic dermatitis patients treated with dupilumab. Dermatitis 32, S71–S80 (2021)

    Article  Google Scholar 

  40. Doucet-Ladevèze, R., et al.: Transcriptomic analysis links eosinophilic esophagitis and atopic dermatitis. Front Pediatr. 7 (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, and the PhD grant: 2022.12728.BD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duarte, A., Belo, O. (2024). A Novel Signature for Distinguishing Non-lesional from Lesional Skin of Atopic Dermatitis Based on a Machine Learning Approach. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 711. Springer, Cham. https://doi.org/10.1007/978-3-031-63211-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63211-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63210-5

  • Online ISBN: 978-3-031-63211-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics