Skip to main content

Simulation Study for Evaluating Efficiency of McPhail Traps in Olive Groves

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Olive tree production has been of paramount importance to nutrition and culture since the early fifth millennium B.C. The most serious pest of olive groves is the olive fruit fly, known as Bactrocera Oleae or Dacus Oleae, which can lead to loss of production up to 80–90%. Nowadays, measuring the olive fruit fly’s population in the olive groves is key to most pest control strategies. Accordingly, herein, a simulation of olive fruit fly’s population dynamics is presented. Initially, the simulation focuses on the correlation between the ratio of captured olive fruit flies in bait traps in relation to the entirety of population (Trap Efficiency). Subsequently, field and its factors were added in the simulation, such as the ratio of olive fruit flies captured in the traps in relation to flies within the trap’s attraction area (Capture Rate), crops’ variation, and temperature. The simulation’s results initially indicated a correlation between Trap Efficiency and Capture Rate based on previous field experiments, as well as a significant correlation between Trap Efficiency and field Temperature, using various Capture Rates. These results lead towards a contemporary tool for the estimation of olive fruit fly population as well as, by use of regression, the identification of a model that provides trap efficiency estimation for future pests’ traps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalamatianos, R., Kermanidis, K., Avlonitis, M., Karydis, I.: Environmental impact on predicting olive fruit fly population using trap measurements. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 180–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_16

    Chapter  Google Scholar 

  2. Amr, A., Sadder, M., Sakarneh, N., et al.: Review article olive fruit fly bacterocera oleae infestation of olives: effect on quality and detection in olive oil. Jordan J. Agric. Sci. 19(1), 81–94 (2023)

    Google Scholar 

  3. Haniotakis, G., Kozyrakis, M., Fitsakis, T.H., Antonidakj, A.: An effective mass trapping method for the control of dacus oleae (diptera: Tephritidae). J. Econ. Entomol. 84(2), 564–569 (1991)

    Article  Google Scholar 

  4. Haniotakis, G.E., et al.: Olive pest control: present status and prospects. IOBC WPRS Bull. 28(9), 1 (2005)

    Google Scholar 

  5. Varikou, K., Alexandrakis, V., Gika, V., Birouraki, A., Marnelakis, Ch., Sergentani, C.: Estimation of fly population density of bactrocera oleae in olive groves of Crete. Phytoparasitica 41(1), 105–111 (2013)

    Google Scholar 

  6. Kapatos, E.T., Fletcher, B.S.: An assessment of components of crop loss due to infestation by dacus oleae, in corfu. Entomologia Hellenica 1, 7–16 (1983)

    Article  Google Scholar 

  7. Kesavaraj, G., Sukumaran, S.: A study on classification techniques in data mining. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–7 (2013)

    Google Scholar 

  8. [World distribution]| EPPO Global Database: Bactrocera oleae (dacuol), 1989–2023 (n.d.)

    Google Scholar 

  9. Fletcher, B.S.: Temperature-development rate relationships of the immature stages and adults of tephritid fruit flies. In: Fruit Flies Their Biology, Natural Enemies and Control, vol. 3, pp. 273–289 (1989)

    Google Scholar 

  10. Broufas, G.D., Pappas, M.L., Koveos, D.S.: Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (diptera: Tephritidae). Ann. Entomol. Soc. Am. 102(1), 70–75 (2009)

    Article  Google Scholar 

  11. Kapatos, E., Fletcher, B.S.: Seasonal changes in the efficiency of McPhail traps and a model for estimating olive fly densities from trap catches using temperature data. Entomol. Exp. Appl. 33(1), 20–26 (1983)

    Article  Google Scholar 

  12. Economopoulos, A.P., et al.: Population studies on the olive fruit fly, dacus oleae (gmel.) (dipt., tephritidae) in Western Crete. Zeitschrift für Angewandte Entomologie 93(1–5), 463–476 (1982)

    Google Scholar 

  13. University of California Agriculture & Natural Resources: Olive fruit fly management guidelines, Revised 2/09

    Google Scholar 

  14. Steyskal, G.C.: History and use of the McPhail trap. Florida Entomol. 11–16 (1977)

    Google Scholar 

  15. Doitsidis, L., et al.: Remote monitoring of the bactrocera oleae (gmelin) (diptera: Tephritidae) population using an automated McPhail trap. Comput. Electron. Agric. 137, 69–78 (2017)

    Google Scholar 

  16. Haniotakis, G.E., Skyrianos, G.: Attraction of the olive fruit fly to pheromone, McPhail, and color traps. J. Econ. Entomol. 74(1), 58–60 (1981)

    Article  Google Scholar 

  17. Kapatos, E.T., Fletcher, B.S.: The phenology of the olive fly, dacus oleae (gmel.) (diptera, tephritidae), in corfu. Zeitschrift für Angewandte Entomologie 97(1–5), 360–370 (1984)

    Google Scholar 

  18. Mamdouh, N., Khattab, A.: Yolo-based deep learning framework for olive fruit fly detection and counting. IEEE Access 9, 84252–84262 (2021)

    Article  Google Scholar 

  19. Molina-Rotger, M., Morán, A., Miranda, M.Á., Alorda, B.: Remote fruit fly detection using computer vision and machine learning-based electronic trap. Front. Plant Sci. 14 (2023)

    Google Scholar 

  20. Kalamatianos, R., Kermanidis, K.L., Karydis, I., Avlonitis, M.: Treating stochasticity of olive-fruit fly’s outbreaks via machine learning algorithms. Neurocomputing (Amsterdam) 280, 135–146 (2018)

    Google Scholar 

  21. Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)

    Google Scholar 

  22. Sexton, C.: Fruit flies can travel six million times their body length. Earth.com, April 2021

    Google Scholar 

  23. Leitch, K.J., Ponce, F.V., Dickson, W., Van Breugel, F., Dickinson, M.H.: The long-distance flight behavior of drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc. Natl. Acad. Sci. USA 118(17) (2021)

    Google Scholar 

  24. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

    Google Scholar 

  25. Bavirthi, S.S., Supreethi, K.P.: Systematic review of indexing spatial skyline queries for decision support. Int. J. Decis. Support Syst. Technol. (IJDSST) 14(1), 1–15 (2022)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the Ionian University, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Avgoustis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avgoustis, N., Alvanitopoulos, E., Polymenakos, N.M., Karydis, I., Avlonitis, M. (2024). Simulation Study for Evaluating Efficiency of McPhail Traps in Olive Groves. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 712. Springer, Cham. https://doi.org/10.1007/978-3-031-63215-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63215-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63214-3

  • Online ISBN: 978-3-031-63215-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics