Skip to main content

Graph Neural Networks in PyTorch for Link Prediction in Industry 4.0 Process Graphs

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Process mining constitutes an integral part of enterprise infrastructure as its adaptability and evolution potential enhance the digital awareness of stakeholders. In the context of Industry 4.0 a mainstay of process mining is the integrity verification of process graphs. Since manufacturing typically consists of numerous operations, it follows that process mining techniques, including link prediction, must possess learning capabilities powerful enough to accurately evaluate the deviation degree from the respective template using a wide array of structural and functional attributes, including semantics in the form of labels denoting operations such as data request or human operator notification. In turn, this relies heavily on discerning higher order patterns because of the distributed nature of industrial processes. Graph neural networks (GNNs) are ideally suited for performing link prediction since they offer scalability, versatility, and geometric intuition. Two attribute sets were tested, one containing only structural patterns and one combining them with functional ones. Results with synthetic benchmark process graphs of varying complexity show that GNNs exploit the extra functional information in the form of labels to recover missing edges, themselves part of the graph structure, even when the functional attributes are noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pytorch.org.

References

  1. Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther, C., Verbeek, E.: IEEE 1849: the XES standard. IEEE Comput. Intell. Mag. 12(2), 4–8 (2017)

    Article  Google Scholar 

  2. Augusto, A., Mendling, J., Vidgof, M., Wurm, B.: The connection between process complexity of event sequences and models discovered by process mining. Inf. Sci. 598, 196–215 (2022)

    Article  Google Scholar 

  3. Becker, T., Intoyoad, W.: Context aware process mining in logistics. Procedia Cirp 63, 557–562 (2017)

    Article  Google Scholar 

  4. Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Inf. Commun. Eng. 8(1), 37–44 (2014)

    Google Scholar 

  5. Cappart, Q., et al.: Combinatorial optimization and reasoning with graph neural networks. J. Mach. Learn. Res. 24(130), 1–61 (2023)

    MathSciNet  Google Scholar 

  6. Castelo-Branco, I., Cruz-Jesus, F., Oliveira, T.: Assessing industry 4.0 readiness in manufacturing: evidence for the EU. Comput. Ind. 107, 22–32 (2019)

    Google Scholar 

  7. Choueiri, A.C., Santos, E.A.P.: Discovery of path-attribute dependency in manufacturing environments: a process mining approach. J. Manuf. Syst. 61, 54–65 (2021)

    Article  Google Scholar 

  8. Drakopoulos, G., Giannoukou, I., Sioutas, S., Mylonas, P.: Self organizing maps for cultural content delivery. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07376-1

    Article  Google Scholar 

  9. Drakopoulos, G., Kafeza, E., Mylonas, P., Iliadis, L.: Transform-based graph topology similarity metrics. Neural Comput. Appl. 33(23), 16363–16375 (2021). https://doi.org/10.1007/s00521-021-06235-9

    Article  Google Scholar 

  10. Drakopoulos, G., Kafeza, E., Mylonas, P., Sioutas, S.: A graph neural network for fuzzy twitter graphs. In: Cong, G., Ramanath, M., (eds.) CIKM companion volume, vol. 3052. CEUR-WS.org (2021)

    Google Scholar 

  11. Drakopoulos, G., Kafeza, E., Mylonas, P., Sioutas, S.: Approximate high dimensional graph mining with matrix polar factorization: a twitter application. In: IEEE Big Data, pp. 4441–4449. IEEE (2021). https://doi.org/10.1109/BigData52589.2021.9671926

  12. Drakopoulos, G., Kafeza, E., Mylonas, P., Sioutas, S.: Process mining analytics for industry 4.0 with graph signal processing. In: WEBIST SCITEPRESS, pp. 553–560 (2021). https://doi.org/10.5220/0010718300003058

  13. Drakopoulos, G., Mylonas, P.: A genetic algorithm for Boolean semiring matrix factorization with applications to graph mining. In: Big Data. IEEE (2022). https://doi.org/10.1109/BigData55660.2022.10020828

  14. Fang, N., Fang, X., Lu, K., Asare, E.: Online incremental mining based on trusted behavior interval. IEEE Access 9, 158562–158573 (2021)

    Google Scholar 

  15. Fauzi, R., Andreswari, R.: Business process analysis of programmer job role in software development using process mining. Procedia Comput. Sci. 197, 701–708 (2022)

    Article  Google Scholar 

  16. Gao, C., et al.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recommender Syst. 1(1), 1–51 (2023)

    Article  MathSciNet  Google Scholar 

  17. Kerin, M., Pham, D.T.: A review of emerging industry 4.0 technologies in remanufacturing. J. Cleaner Prod. 237, 117805 (2019)

    Google Scholar 

  18. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. lett. 3, 18–23 (2015)

    Google Scholar 

  19. Machado, C.G., Winroth, M.P., Ribeiro da Silva, E.H.D.: Sustainable manufacturing in industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58(5), 1462–1484 (2020)

    Google Scholar 

  20. Mitsyuk, A.A., Shugurov, I.S., Kalenkova, A.A., van der Aalst, W.M.: Generating event logs for high-level process models. Simul. Model. Pract. Theory 74, 1–16 (2017)

    Article  Google Scholar 

  21. Müller, E.: Graph clustering with graph neural networks. J. Mach. Learn. Res. 24, 1–21 (2023)

    MathSciNet  Google Scholar 

  22. Rajput, S., Singh, S.P.: Connecting circular economy and industry 4.0. Int. J. Inf. Manage. 49, 98–113 (2019)

    Google Scholar 

  23. Sadeghianasl, S., Ter Hofstede, A.H., Suriadi, S., Turkay, S.: Collaborative and interactive detection and repair of activity labels in process event logs. In: 2020 2nd International Conference on Process Mining, pp. 41–48. IEEE (2020)

    Google Scholar 

  24. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Event abstraction for process mining using supervised learning techniques. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 15, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56994-9_18

    Chapter  Google Scholar 

  25. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)

    Article  Google Scholar 

  26. Van Der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manage. Inf. Syst. 3(2), 1–17 (2012)

    Article  Google Scholar 

  27. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. Intell. Syst. Technol. 10(4), 1–34 (2019)

    Google Scholar 

  28. Yang, L., Guo, Y., Gu, J., Jin, D., Yang, B., Cao, X.: Probabilistic graph convolutional network via topology-constrained latent space model. IEEE Trans. Cybern. 52(4), 2123–2136 (2020)

    Google Scholar 

  29. Zhou, K., Liu, T., Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2147–2152. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This conference paper has been funded by Research Initiative Fund (RIF) Grant R23015, Zayed University, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Drakpopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kafeza, E., Drakpopoulos, G., Mylonas, P. (2024). Graph Neural Networks in PyTorch for Link Prediction in Industry 4.0 Process Graphs. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63219-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63218-1

  • Online ISBN: 978-3-031-63219-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics