Skip to main content

A Deep Learning-Based Framework for Racket Sports Court Registration

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

In this paper, we present a new framework that combines deep semantic segmentation with homography estimation to address challenges in racket sports court registration from broadcast videos. In particular, we deal with courts presenting the following problems: (a) brushed and occluded lines, (b) illumination variations, and (c) unknown camera parameters. Given an input frame from a broadcast video, our approach employs an encoder-decoder deep neural network to predict a precise pixel-level segmentation mask, which is then used to estimate the homography matrix between the input frame and its reference court model. For a comprehensive evaluation, we have developed two datasets for badminton and tennis that meet our specific needs. Since datasets and state-of-the-art methods with code are not publicly available, we compared our framework with a commonly handcrafted approach largely used as a baseline method in racket sports analysis. We show that our method outperforms the baseline in terms of registration accuracy and inference latency per frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones, C.D., Smith, A.B., Roberts, E.F.: Article title. In: Proceedings Title, vol. II, pp. 803–806. IEEE (2003)

    Google Scholar 

  2. Farin, D., Krabbe, S., de With, Peter H.N., Effelsberg, W.: Robust camera calibration for sport videos using court models. In: Storage and Retrieval Methods and Applications for Multimedia 2004. LNCS, vol. 5307, pp. 80–91. International Society for Optics and Photonics (2003)

    Google Scholar 

  3. Han, J., Farin, D., de With, P.H.N.: Generic 3-D modeling for content analysis of court-net sports sequences. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4352, pp. 279–288. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-69429-8_28

    Chapter  Google Scholar 

  4. Dang, B., Tran, A., Dinh, T., Dinh, T.: A real time player tracking system for broadcast tennis video. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS (LNAI), vol. 5991, pp. 105–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12101-2_12

    Chapter  Google Scholar 

  5. Mihai, P., Andreea-Oana, P., Hassan, B.L., Bruno, F., Cédric, B.: Real time tennis match tracking with low cost equipment. In: The Florida AI Research Society (2018). https://api.semanticscholar.org/CorpusID:44157580

  6. Silvia, V.M.: Computer vision and machine learning for in-play tennis analysis: framework, algorithms and implementation (2018). https://api.semanticscholar.org/CorpusID:198358283

  7. Jorge, J. M.: Levenberg–Marquardt algorithm: implementation and theory (1977). https://api.semanticscholar.org/CorpusID:203694768

  8. Jiang, W., Gamboa Higuera, J.C., Angles, B., Sun, W., Javan, M., Yi, K.M.: Optimizing through learned errors for accurate sports field registration. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 201–210 (2020). https://doi.org/10.1109/WACV45572.2020.9093581

  9. Nie, X., Chen, S., Hamid, R.: A robust and efficient framework for sports-field registration. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1935–1943 (2021). https://doi.org/10.1109/WACV48630.2021.00198

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Harltey, A., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn (2006). https://api.semanticscholar.org/CorpusID:8641226

  12. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  13. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  14. Huang, M.: Theory and implementation of linear regression. In: 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), pp. 210–217 (2020).https://doi.org/10.1109/CVIDL51233.2020.00-99

  15. Chu, Y.-J., et al.: Sports field registration via keypoints-aware label condition. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3522–3529 (2022). https://doi.org/10.1109/CVPRW56347.2022.00396

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  18. Shi, F., Marchwica, P., Gamboa Higuera, J.C., Jamieson, M., Javan, M., Siva, P.: Self-supervised shape alignment for sports field registration. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3768–3777 (2022). https://doi.org/10.1109/WACV51458.2022.00382

  19. Keerthana, R., Muhammad, A.A., Nur, A.R., Nurul, F.G., Saharudin, I.: Deep learning in sport video analysis: a review. TELKOMNIKA Telecommun. Comput. Electron. Control 18, 1926–1933 (2020). https://api.semanticscholar.org/CorpusID:216200176

  20. Maglo, A., Orcesi, A., Pham, Q.-C.: KaliCalib: a framework for basketball court registration. In: Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports, pp. 111–116. Association for Computing Machinery (2022). https://doi.org/10.1145/3552437.3555701

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  22. Allam, S.H., Sherien, M., Mohamed, S., Mohammad, E.R.: A survey on hough transform, theory, techniques and applications. arXiv, abs/1502.02160 (2015). https://api.semanticscholar.org/CorpusID:11028590

  23. Citraro, L., et al.: Real-time camera pose estimation for sports fields. Mach. Vision Appl. 31 (2020). https://api.semanticscholar.org/CorpusID:214632673

  24. Tarashima, S.: Sports field recognition using deep multi-task learning. J. Inf. Process. 29, 328–335 (2021). https://doi.org/10.2197/ipsjjip.29.328

  25. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2014). https://api.semanticscholar.org/CorpusID:2930547

  26. Shih, H.-C.: A survey of content-aware video analysis for sports. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1212–1231 (2018). https://doi.org/10.1109/TCSVT.2017.2655624

    Article  Google Scholar 

  27. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv, abs/1905.11946 (2019). https://api.semanticscholar.org/CorpusID:167217261

  28. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv, abs/1706.05587 (2017). https://api.semanticscholar.org/CorpusID:22655199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jouini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jouini, A., Elloumi, M., Chaieb, F. (2024). A Deep Learning-Based Framework for Racket Sports Court Registration. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63219-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63218-1

  • Online ISBN: 978-3-031-63219-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics