Skip to main content

A Second-Order Adaptive Network Model for Political Opinion Dynamics

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

This paper introduces a second-order adaptive network model for simulating political opinion dynamics, considering cognitive, affective, and social factors. The model, grounded in political psychology and communication theories, illustrates how individuals’ opinions evolve in response to external stimuli such as political parties and media. It also explores the impact of individuals’ reasoning abilities and initial viewpoints on their rationality and cognitive flexibility. Through simulation experiments, the paper demonstrates the model’s capacity to generate realistic outcomes such as homophily and polarization phenomena. It further discusses the model’s implications for mitigating misinformation spread and reducing polarization in political opinion dynamics, identifying key influencing factors and potential interventions. The paper contributes to computational politics by offering an innovative approach to modeling individual and collective opinion formation processes, acknowledging the complexity and adaptivity of cognitive, affective, and social dynamics.

M. Pellemans, M. den Heijer and S. Jansen—Equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matsubayashi, T.: Do politicians shape public opinion? Br. J. Polit. Sci. 43(2), 451–478 (2012). https://doi.org/10.1017/s0007123412000373

    Article  Google Scholar 

  2. Fan, D.P., Tims, A.R.: The impact of the news media on public opinion: American presidential election 1987–1988. Int. J. Public Opin. Res. 1(2), 151–163 (1989). https://doi.org/10.1093/ijpor/1.2.151

    Article  Google Scholar 

  3. Parker, S.L., Parker, G.R., McCann, J.A.: Opinion taking within friendship networks. Am. J. Polit. Sci. 52(2), 412–420 (2008). https://doi.org/10.1111/j.1540-5907.2008.00320.x

    Article  Google Scholar 

  4. Jennings, M.K., Stoker, L., Bowers, J.: Politics across generations: family transmission reexamined. J. Polit. 71(3), 782–799 (2009). https://doi.org/10.1017/S0022381609090719

    Article  Google Scholar 

  5. Wettstein, M., Wirth, W.: Media effects: how media influence voters. Swiss Polit. Sci. Rev. 23(3), 262–269 (2017). https://doi.org/10.1111/spsr.12263

    Article  Google Scholar 

  6. McGann, A.J., Dellepiane-Avellaneda, S., Bartle, J.: Dynamics of public opinion and policy response under proportional and plurality elections. Econ. Polit. 35(1), 333–355 (2022). https://doi.org/10.1111/ecpo.12217

    Article  Google Scholar 

  7. Tufekci, Z.: Engineering the public: big data, surveillance and computational politics. First Monday (2014). https://doi.org/10.5210/fm.v19i7.4901

    Article  Google Scholar 

  8. Sîrbu, Alina, Loreto, Vittorio, Servedio, Vito D. P.., Tria, Francesca: Opinion dynamics: models, extensions and external effects. In: Loreto, Vittorio, et al. (eds.) Participatory Sensing, Opinions and Collective Awareness. UCS, pp. 363–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-25658-0_17

    Chapter  Google Scholar 

  9. Haq, E.U., Braud, T., Kwon, Y.D., Hui, P.: A survey on computational politics. IEEE Access 8, 197379–197406 (2020). https://doi.org/10.1109/access.2020.3034983

    Article  Google Scholar 

  10. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001). https://doi.org/10.1146/annurev.soc.27.1.415

    Article  Google Scholar 

  11. Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Menczer, F., Flammini, A.: Political polarization on Twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 5, no. 1, pp. 89–96 (2021). https://doi.org/10.1609/icwsm.v5i1.14126

  12. Draca, M., Schwarz, C.: How polarized are citizens? Measuring ideology from the ground-up. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3154431

    Article  Google Scholar 

  13. Follmer, R., Kellerhoff, J., Fridolin Wolf, M.A.: Vom Unbehagen an der Vielfalt (2018). https://www.bertelsmann-stiftung.de/de/publikationen/publikation/did/vom-unbehagen-an-der-vielfalt. Accessed 19 February 2024

  14. Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Conflict Resolut. 41(2), 203–226 (1997)

    Article  Google Scholar 

  15. Benczik, I.J., Benczik, S.Z., Schmittmann, B., Zia, R.K.P.: Opinion dynamics on an adaptive random network. Phys. Rev. E 79, 046104 (2009). https://doi.org/10.1103/PhysRevE.79.046104

    Article  Google Scholar 

  16. Kan, U., Feng, M., Porter, M.A.: An adaptive bounded-confidence model of opinion dynamics on networks. J. Complex Netw. 11(1), cnac055 (2023). https://doi.org/10.1093/comnet/cnac055

  17. Brede, M.: How does active participation affect consensus: adaptive network model of opinion dynamics and influence maximizing rewiring. Complexity (2019). https://doi.org/10.1155/2019/1486909

    Article  Google Scholar 

  18. Mauk, M.: Quality of democracy makes a difference, but not for everyone: how political interest, education, and conceptions of democracy condition the relationship between democratic quality and political trust. Front. Polit. Sci. 3 (2021). https://doi.org/10.3389/fpos.2021.637344

  19. Haidt, J.: The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108(4), 814–834 (2001). https://doi.org/10.1037/0033-295x.108.4.814

    Article  Google Scholar 

  20. Beck, A.T., Haigh, E.A.: Advances in cognitive theory and therapy: the generic cognitive model. Annu. Rev. Clin. Psychol. 10, 1–24 (2014). https://doi.org/10.1146/annurev-clinpsy-032813-153734

    Article  Google Scholar 

  21. Buechner, B.M., Clarkson, J.J., Otto, A.S., Hirt, E.R., Ho, M.C.: Political ideology and executive functioning: the effect of conservatism and liberalism on cognitive flexibility and working memory performance. Soc. Psychol. Pers. Sci. 12(2), 237–247 (2021). https://doi.org/10.1177/1948550620913187

    Article  Google Scholar 

  22. Zmigrod, L., Burnell, R., Hameleers, M.: The misinformation receptivity framework: political misinformation and disinformation as cognitive Bayesian inference problems. Eur. Psychol. 28, 173–188 (2023). https://doi.org/10.1027/1016-9040/a000498

    Article  Google Scholar 

  23. Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive. Affective and Social Interactions. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45213-5

  24. Treur, J.: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31445-3

  25. Jolly, S., et al.: Chapel hill expert survey trend file, 1999–2019. Elect. Stud. 75, 102420 (2022). https://doi.org/10.1016/j.electstud.2021.102420

    Article  Google Scholar 

  26. Newman, N., Fletcher, R., Eddy, K., Robertson, C.T., Nielsen, R.K.: Reuters Institute Digital News Report 2023 (2023). https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023. Accessed 19 February 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathijs Pellemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pellemans, M., den Heijer, M., Jansen, S., Treur, J. (2024). A Second-Order Adaptive Network Model for Political Opinion Dynamics. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63219-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63218-1

  • Online ISBN: 978-3-031-63219-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics