Skip to main content

Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

News sentiment is attracting considerable interest in stock market prediction, given its crucial role in shaping stock prices. Previous research has mainly focused on improving prediction accuracy by exploiting news sentiment, without adequately considering the different levels of attention that individual news articles receive. Furthermore, despite the advanced predictive capabilities of deep learning models, there has been a lack of focus on the interpretability of these models, leading to predictions that are not transparent. This study presents an innovative prediction model that integrates a FinBERT-based analysis of news sentiment and investor attention metrics with an attention-based Temporal Fusion Transformer framework. This approach not only enables highly effective forecasting, but also provides insights into the temporal dynamics that influence the stock market. The effectiveness of the model is demonstrated by analyzing stock price data for 41 of the largest market capitalization companies over the period 2010 to 2021. The results confirm the superiority of the proposed model over existing deep learning approaches, and the attention analysis underscores the critical role of synthesizing news sentiment and attention metrics in predicting stock prices.

Supported by the scientific research project of the Czech Science Foundation Grant No: 22-22586S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, D.E., McAleer, M., Singh, A.K.: Daily market news sentiment and stock prices. Appl. Econ. 51(30), 3212–3235 (2019)

    Article  Google Scholar 

  2. Lu, W., Li, J., Wang, J., Qin, L.: A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 33, 4741–4753 (2021)

    Article  Google Scholar 

  3. Li, X., Wu, P., Wang, W.: Incorporating stock prices and news sentiments for stock market prediction: a case of Hong Kong. Inf. Process. Manag. 57(5), 102212 (2020)

    Article  Google Scholar 

  4. Sahut, J.M., Hajek, P., Olej, V., Hikkerova, L.: The role of news-based sentiment in forecasting crude oil price during the COVID-19 pandemic. Ann. Oper. Res., 1–24 (2024)

    Google Scholar 

  5. Hajek, P., Novotny, J., Kovarnik, J.: Predicting exchange rate with FinBERT-based sentiment analysis of online news. In: Proceedings of the 2022 6th International Conference on E-Business and Internet, pp. 133–138 (2022)

    Google Scholar 

  6. Hajek, P., Henriques, R.: Predicting M&A targets using news sentiment and topic detection. Technol. Forecast. Soc. Chang. 201, 123270 (2024)

    Article  Google Scholar 

  7. Araci, D.: Finbert: financial sentiment analysis with pre-trained language models. arXiv:1908.10063 (2019)

  8. Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., Anastasiu, D.C.: Stock price prediction using news sentiment analysis. In: Proceedings of the IEEE 5th International Conference on Big Data Computing Service and Applications (BigDataService), pp. 205–208 (2019)

    Google Scholar 

  9. Nemes, L., Kiss, A.: Prediction of stock values changes using sentiment analysis of stock news headlines. J. Inf. Telecommun. 5(3), 375–394 (2021)

    Google Scholar 

  10. Audrino, F., Sigrist, F., Ballinari, D.: The impact of sentiment and attention measures on stock market volatility. Int. J. Forecast. 36(2), 334–357 (2020)

    Article  Google Scholar 

  11. Yang, D., Ma, T., Wang, Y., Wang, G.: Does investor attention affect stock trading and returns? Evidence from publicly listed firms in China. J. Behav. Financ. 22(4), 368–381 (2021)

    Article  Google Scholar 

  12. Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)

    Article  Google Scholar 

  13. Schumaker, R.P., Zhang, Y., Huang, C.N., Chen, H.: Evaluating sentiment in financial news articles. Decis. Support Syst. 53(3), 458–464 (2012)

    Article  Google Scholar 

  14. Li, X., Xie, H., Chen, L., Wang, J., Deng, X.: News impact on stock price return via sentiment analysis. Knowl.-Based Syst. 69, 14–23 (2014)

    Article  Google Scholar 

  15. Costola, M., Hinz, O., Nofer, M., Pelizzon, L.: Machine learning sentiment analysis, COVID-19 news and stock market reactions. Res. Int. Bus. Financ. 64, 101881 (2023)

    Article  Google Scholar 

  16. Xu, Y., Liang, C., Li, Y., Huynh, T.L.: News sentiment and stock return: evidence from managers’ news coverages. Financ. Res. Lett. 48, 102959 (2022)

    Article  Google Scholar 

  17. Hung, M.C., Hsia, P.H., Kuang, X.J., Lin, S.K.: Intelligent portfolio construction via news sentiment analysis. Int. Rev. Econ. Financ. 89, 605–617 (2024)

    Article  Google Scholar 

  18. Sharaf, M., Hemdan, E.E.D., El-Sayed, A., El-Bahnasawy, N.A.: An efficient hybrid stock trend prediction system during COVID-19 pandemic based on stacked-LSTM and news sentiment analysis. Multimedia Tools Appl. 82(16), 23945–23977 (2023)

    Article  Google Scholar 

  19. Ray, P., Ganguli, B., Chakrabarti, A.: A hybrid approach of Bayesian structural time series with LSTM to identify the influence of news sentiment on short-term forecasting of stock price. IEEE Trans. Comput. Soc. Syst. 8(5), 1153–1162 (2021)

    Article  Google Scholar 

  20. Jin, Z., Yang, Y., Liu, Y.: Stock closing price prediction based on sentiment analysis and LSTM. Neural Comput. Appl. 32, 9713–9729 (2020)

    Article  Google Scholar 

  21. Li, Q., Tan, J., Wang, J., Chen, H.: A multimodal event-driven LSTM model for stock prediction using online news. IEEE Trans. Knowl. Data Eng. 33(10), 3323–3337 (2020)

    Article  Google Scholar 

  22. Shapiro, A.H., Sudhof, M., Wilson, D.J.: Measuring news sentiment. J. Econometr. 228(2), 221–243 (2022)

    Article  MathSciNet  Google Scholar 

  23. Hajek, P.: Combining bag-of-words and sentiment features of annual reports to predict abnormal stock returns. Neural Comput. Appl. 29, 343–358 (2018)

    Article  Google Scholar 

  24. Hajek, P., Barushka, A.: Integrating sentiment analysis and topic detection in financial news for stock movement prediction. In: Proceedings of the 2nd International Conference on Business and Information Management, pp. 158–162 (2018)

    Google Scholar 

  25. Shah, D., Isah, H., Zulkernine, F.: Predicting the effects of news sentiments on the stock market. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4705–4708 (2018)

    Google Scholar 

  26. Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., Chen, Y.: The effect of news and public mood on stock movements. Inf. Sci. 278, 826–840 (2014)

    Article  Google Scholar 

  27. Han, Y., Tian, Y., Yu, L., Gao, Y.: Economic system forecasting based on temporal fusion transformers: multi-dimensional evaluation and cross-model comparative analysis. Neurocomputing 552, 126500 (2023)

    Article  Google Scholar 

  28. Bouteska, A., Hajek, P., Abedin, M.Z., Dong, Y.: Effect of Twitter investor engagement on cryptocurrencies during the COVID-19 pandemic. Res. Int. Bus. Financ. 64, 101850 (2023)

    Article  Google Scholar 

  29. Chen, Y., Hao, Y.: A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Syst. Appl. 80, 340–355 (2017)

    Article  Google Scholar 

  30. Gupta, U., Bhattacharjee, V., Bishnu, P.S.: StockNet-GRU based stock index prediction. Expert Syst. Appl. 207, 117986 (2022)

    Article  Google Scholar 

  31. Farimani, S.A., Jahan, M.V., Fard, A.M., Tabbakh, S.R.K.: Investigating the informativeness of technical indicators and news sentiment in financial market price prediction. Knowl.-Based Syst. 247, 108742 (2022)

    Article  Google Scholar 

  32. Zhang, C.X., Li, J., Huang, X.F., Zhang, J.S., Huang, H.C.: Forecasting stock volatility and value-at-risk based on temporal convolutional networks. Expert Syst. Appl. 207, 117951 (2022)

    Article  Google Scholar 

  33. Khan, W., Ghazanfar, M.A., Azam, M.A., Karami, A., Alyoubi, K.H., Alfakeeh, A.S.: Stock market prediction using machine learning classifiers and social media, news. J. Ambient. Intell. Humaniz. Comput. 13, 3433–3456 (2022)

    Article  Google Scholar 

  34. Hajek, P., Novotny, J.: Fuzzy rule-based prediction of gold prices using news affect. Expert Syst. Appl. 193, 116487 (2022)

    Article  Google Scholar 

  35. Fatouros, G., Soldatos, J., Kouroumali, K., Makridis, G., Kyriazis, D.: Transforming sentiment analysis in the financial domain with ChatGPT. Mach. Learn. Appl. 14, 100508 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hajek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajek, P., Novotny, J. (2024). Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63219-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63218-1

  • Online ISBN: 978-3-031-63219-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics