Skip to main content

On the Simulation Power of Surface Chemical Reaction Networks

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14776))

  • 372 Accesses

Abstract

The Chemical Reaction Network (CRN) is a well-studied model that describes the interaction of molecules in well-mixed solutions. In 2014, Qian and Winfree [21] proposed the abstract surface chemical reaction network model (sCRN), which takes advantage of spatial separation by placing molecules on a structured surface, limiting the interaction between molecules. In this model, molecules can only react with their immediate neighbors. Many follow-up works study the computational and pattern-construction power of sCRNs.

In this work, our goal is to describe the power of sCRN by relating the model to other well-studied models in distributed computation. Our main result is to show that, given the same initial configuration, sCRN, affinity-strengthening tile automata, cellular automata, and amoebot can all simulate each other (up to unavoidable rotation and reflection of the pattern). One of our techniques is coloring on-the-fly, which allows all molecules in sCRN to have a global orientation.

This work is supported by NSTC (Taiwan) grant number 110-2223-E-002-006-MY3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. p. 740-748 (2001)

    Google Scholar 

  2. Alaniz, R.M., Brunner, J., Coulombe, M., Demaine, E.D., Diomidova, J., Knobel, R., Gomez, T., Grizzell, E., Lynch, J., Rodriguez, A., Schweller, R., Wylie, T.: Complexity of reconfiguration in surface chemical reaction networks (2023)

    Google Scholar 

  3. Alaniz, R.M., Caballero, D., Cirlos, S.C., Gomez, T., Grizzell, E., Rodriguez, A., Schweller, R., Tenorio, A., Wylie, T.: Building squares with optimal state complexity in restricted active self-assembly. J. Comput. Syst. Sci. 138, 103462 (2023)

    Article  MathSciNet  Google Scholar 

  4. Alumbaugh, J.C., Daymude, J.J., Demaine, E.D., Patitz, M.J., Richa, A.W.: Simulation of programmable matter systems using active tile-based self-assembly. In: DNA Computing and Molecular Programming. pp. 140–158 (2019)

    Google Scholar 

  5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Trans. Auton. Adapt. Syst. 3(4) (12 2008). https://doi.org/10.1145/1452001.1452003, https://doi.org/10.1145/1452001.1452003

  6. Bhattacharjee, K., Naskar, N., Roy, S., Das, S.: A survey of cellular automata: Types, dynamics, non-uniformity and applications. Natural Computing 19, 433-461 (06 2020)

    Google Scholar 

  7. Brailovskaya, T., Gowri, G., Yu, S., Winfree, E.: Reversible computation using swap reactions on a surface. In: DNA Computing and Molecular Programming. pp. 174–196 (2019)

    Google Scholar 

  8. Caballero, D., Gomez, T., Schweller, R., Wylie, T.: Verification and computation in restricted tile automata. Natural Computing pp. 1–19 (2021)

    Google Scholar 

  9. Chalk, C., Luchsinger, A., Martinez, E., Schweller, R., Winslow, A., Wylie, T.: Freezing simulates non-freezing tile automata. In: DNA Computing and Molecular Programming. pp. 155–172 (2018)

    Google Scholar 

  10. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, H.L., Doty, D., Soloveichik, D., Reeves, W.: Rate-independent computation in continuous chemical reaction networks. J. ACM 70(3), 1–61 (2023)

    Article  MathSciNet  Google Scholar 

  12. Clamons, S., Qian, L., Winfree, E.: Programming and simulating chemical reaction networks on a surface. J. R. Soc. Interface 17, 20190790 (2020)

    Article  Google Scholar 

  13. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of Chemical Reaction Networks, pp. 543–584. Springer Berlin Heidelberg, Berlin, Heidelberg (2009), https://doi.org/10.1007/978-3-540-88869-7_27

  14. Dennunzio, A., Formenti, E., Manzoni, L.: Computing issues of asynchronous ca. Fundam. Inf. 120(2), 165–180 (2012)

    MathSciNet  Google Scholar 

  15. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: IEEE 54th Annual Symposium on Foundations of Computer Science. pp. 302–310 (2012)

    Google Scholar 

  16. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) Computational Methods in Systems Biology, pp. 108–127. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  17. Fatès, N., Gerin, L.: Examples of fast and slow convergence of 2d asynchronous cellular systems. In: Cellular Automata. pp. 184–191 (2008)

    Google Scholar 

  18. Hader, D., Patitz, M.J.: The impacts of dimensionality, diffusion, and directedness on intrinsic cross-model simulation in tile-based self-assembly (2023)

    Google Scholar 

  19. von Neumann, J.: Theory of self-reproducing automata (1966), https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf

  20. Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) Unconventional Computation and Natural Computation. pp. 34–62 (2012)

    Google Scholar 

  21. Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with dna-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA Computing and Molecular Programming, pp. 114–131. Springer International Publishing, Cham (2014)

    Google Scholar 

  22. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of the Annual ACM Symposium on Theory of Computing. pp. 459–468 (2000)

    Google Scholar 

  23. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing: An International Journal 7(4), 615-633 (dec 2008).https://doi.org/10.1007/s11047-008-9067-y, https://doi.org/10.1007/s11047-008-9067-y

  24. Winfree, E.: Algorithmic self-assembly of dna. In: Proceedings of the International Conference on Microtechnologies in Medicine and Biology. pp. 4–4 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Lin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, YX., Chen, HL. (2024). On the Simulation Power of Surface Chemical Reaction Networks. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics