Skip to main content

A General Design Method for Scaffold-Free DNA Wireframe Nanostructures

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14776))

  • 465 Accesses

Abstract

In the area of DNA nanotechnology, approaches to composing wireframe nanostructures exclusively from short oligonucleotides, without a coordinating long scaffold strand, have been proposed by Goodman et al. (2004) and Wang et al. (2019). We present a general design method that extends these special cases to arbitrary wireframes, in the sense of graphs linearly embedded in 2D or 3D space. The method works in linear time in the size of the given wireframe model and is already available for use in the online design tool DNAforge. We also interpret the method in terms of topological graph embeddings, which opens up further research opportunities in developing this design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature 523(7561), 441–444 (2015). https://doi.org/10.1038/nature14586

    Article  Google Scholar 

  2. Dey, S., et al.: DNA origami. Nat. Rev. Methods Primers 1(1), 13 (2021). https://doi.org/10.1038/s43586-020-00009-8

    Article  Google Scholar 

  3. Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725 (2009). https://doi.org/10.1126/science.1174251

    Article  Google Scholar 

  4. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009). https://doi.org/10.1038/nature08016

    Article  Google Scholar 

  5. Ellingham, M.N., Ellis-Monaghan, J.A.: Bi-Eulerian embeddings of graphs and digraphs (2024). arXiv:2404.00325, https://doi.org/10.48550/arXiv.2404.00325

  6. Ellis-Monaghan, J.A.: Transition polynomials, double covers, and biomolecular computing. Congr. Numer. 166, 181 (2004)

    MathSciNet  Google Scholar 

  7. Ellis-Monaghan, J.A., McDowell, A., Moffatt, I., Pangborn, G.: DNA origami and the complexity of Eulerian circuits with turning costs. Nat. Comput. 14(3), 491–503 (2015). https://doi.org/10.1007/s11047-014-9457-2

    Article  MathSciNet  Google Scholar 

  8. Elonen, A., Wimbes, L., Mohammed, A., Orponen, P.: DNAforge: a design tool for nucleic acid wireframe nanostructures. Nucleic Acids Res. gkae367 (Online 15 May 2024). https://doi.org/10.1093/nar/gkae367

  9. Fijavž, G., Pisanski, T., Rus, J.: Strong traces model of self-assembly polypeptide structures. MATCH Commun. Math. Comput. Chem. 71, 199–212 (2014). https://doi.org/10.48550/arXiv.1308.4024

    Article  MathSciNet  Google Scholar 

  10. Fleischner, H.: Eulerian Graphs and Related Topics. Part 1, vol. 1, Annals of Discrete Mathematics, vol. 45. North-Holland Publishing Co., Amsterdam (1990)

    Google Scholar 

  11. Furst, M.L., Gross, J.L., McGeoch, L.A.: Finding a maximum-genus graph imbedding. J. ACM (JACM) 35(3), 523–534 (1988). https://doi.org/10.1145/44483.44485

    Article  MathSciNet  Google Scholar 

  12. Goodman, R.P., Berry, R.M., Turberfield, A.J.: The single-step synthesis of a DNA tetrahedron. Chem. Commun. 40(12), 1372–1373 (2004). https://doi.org/10.1039/B402293A

    Article  Google Scholar 

  13. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Courier Corporation (2001)

    Google Scholar 

  14. Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory, 2nd edn. CRC Press, Boca Raton (2014)

    Google Scholar 

  15. Jonoska, N., Saito, M.: Boundary components of thickened graphs. In: Jonoska, N., Seeman, N.C. (eds.) DNA Computing, pp. 70–81. Springer, Berlin Heidelberg (2002). https://doi.org/10.1007/3-540-48017-X_7

  16. Jun, H., et al.: Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami. Nucleic Acids Res. 49(18), 10265–10274 (2021). https://doi.org/10.1093/nar/gkab762

    Article  Google Scholar 

  17. Jungnickel, D.: Graphs, Networks and Algorithm. Algorithms and Computation in Mathematics. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32278-5

    Book  Google Scholar 

  18. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177 (2012). https://doi.org/10.1126/science.1227268

    Article  Google Scholar 

  19. Kuták, D., Poppleton, E., Miao, H., Šulc, P., Barišić, I.: Unified nanotechnology format: one way to store them all. Molecules 27(1), 63 (2022). https://doi.org/10.3390/molecules27010063

    Article  Google Scholar 

  20. Lee, J.: Introduction to Topological Manifolds, vol. 202. Springer Science & Business Media, Cham (2010). https://doi.org/10.1007/978-1-4419-7940-7

    Book  Google Scholar 

  21. Marchi, A.N., Saaem, I., Vogen, B.N., Brown, S., LaBean, T.H.: Toward larger DNA origami. Nano Lett. 14(10), 5740–5747 (2014). https://doi.org/10.1021/nl502626s

    Article  Google Scholar 

  22. Ong, L.L., Hanikel, N., Yaghi, O.K., Grun, C., Strauss, M.T., Bron, P., Lai-Kee-Him, J., Schueder, F., Wang, B., Wang, P., Kishi, J.Y., Myhrvold, C., Zhu, A., Jungmann, R., Bellot, G., Ke, Y., Yin, P.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552(7683), 72–77 (2017). https://doi.org/10.1038/nature24648

    Article  Google Scholar 

  23. Orponen, P.: Design methods for 3D wireframe DNA nanostructures. Nat. Comput. 17(1), 147–160 (2018). https://doi.org/10.1007/s11047-017-9647-9

    Article  MathSciNet  Google Scholar 

  24. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  25. Rovigatti, L., Šulc, P., Reguly, I.Z., Romano, F.: A comparison between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36(1), 1–8 (2015). https://doi.org/10.1002/jcc.23763

    Article  Google Scholar 

  26. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017). https://doi.org/10.1038/natrevmats.2017.68

    Article  Google Scholar 

  27. Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability. J. Stat. Mech. Theory Exp. 2005(06), P06006 (2005). https://doi.org/10.1088/1742-5468/2005/06/P06006

    Article  Google Scholar 

  28. Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4), 568–576 (1989). https://doi.org/10.1016/0196-6774(89)90006-0

    Article  MathSciNet  Google Scholar 

  29. Veneziano, R., et al.: Designer nanoscale DNA assemblies programmed from the top down. Science (2016). https://doi.org/10.1126/science.aaf4388

    Article  Google Scholar 

  30. Šulc, P., Romano, F., Ouldridge, T.E., Doye, J.P.K., Louis, A.A.: A nucleotide-level coarse-grained model of RNA. J. Chem. Phys. 140(23), 235102 (2014). https://doi.org/10.1063/1.4881424

    Article  Google Scholar 

  31. Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P.K., Louis, A.A.: Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137(13), 135101 (2012). https://doi.org/10.1063/1.4754132

    Article  Google Scholar 

  32. Wang, W., et al.: Complex wireframe DNA nanostructures from simple building blocks. Nat. Commun. 10(1), 1067 (2019). https://doi.org/10.1038/s41467-019-08647-7

    Article  Google Scholar 

  33. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012). https://doi.org/10.1038/nature11075

    Article  Google Scholar 

  34. Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M.T., Park, S.H., LaBean, T.H., Reif, J.H.: Programming DNA tube circumferences. Science 321(5890), 824–826 (2008). https://doi.org/10.1126/science.1157312

    Article  Google Scholar 

  35. Zhang, H., Chao, J., Pan, D., Liu, H., Huang, Q., Fan, C.: Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. 48(51), 6405–6407 (2012). https://doi.org/10.1039/c2cc32204h

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Orponen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elonen, A., Mohammed, A., Orponen, P. (2024). A General Design Method for Scaffold-Free DNA Wireframe Nanostructures. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics