Abstract
We present a general method for rendering representations of multi-stranded DNA complexes from textual descriptions into 2D diagrams. The complexes can be arbitrarily pseudoknotted, and if a planar rendering is possible, the method will determine one in time which is essentially linear in the size of the textual description. (That is, except for a final stochastic fine-tuning step.) If a planar rendering is not possible, the method will compute a visually pleasing approximate rendering in quadratic time. Examples of diagrams produced by the method are presented in the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104, 45–62 (2000)
Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27, 320–331 (1979)
Bertault, F.: A force-directed algorithm that preserves edge-crossing properties. Inf. Process. Lett. 74, 7–13 (2000)
Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8, 10–15 (1993)
Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by edge addition. J. Graph Algorithms App. 8, 241–273 (2004)
Bruccoleri, R.E., Heinrich, G.: An improved algorithm for nucleic acid secondary structure display. Comput. Appl. Biosci. 4, 167–173 (1988)
Byun, Y., Han, K.: PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25, 1435–1437 (2009)
Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The Open Graph Drawing Framework (OGDF). In: Handbook of Graph Drawing and Visualization, chap. 17. CRC Press (2014)
Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. App. 7, 211–223 (1997)
Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a graph layout problem with applications to VLSI design. SIAM J. Algebr. Discr. Methods 8, 33–58 (1986)
Di Battista, G., Eades, P., Tammasia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. 11, 229–233 (1948)
Gao, S., Ding, K.: A graphical criterion of planarity for RNA secondary structures with pseudoknots in Rivas-Eddy class. Theoret. Comput. Sci. 395, 47–56 (2008)
Gautam, V.K., Long, S., Nowicka, M., Orponen, P.: XDSD: A Tool Bridging DSD System Design to Rule-Based Modelling and Simulation. Web server: https://xdsd-web.org
Gautam, V.K., Long, S., Orponen, P.: RuleDSD: a rule-based modelling and simulation tool for DNA strand displacement systems. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 158–167 (2020)
Grun, C., Werfel, J., Zhang, D.Y., Yin, P.: DyNAMiC workbench: an integrated development environment for dynamic DNA nanotechnology. J. R. Soc. Interface 12(111), 20150580 (2015)
Gutwenger, C.: Application of SPQR-trees in the planarization approach for drawing graphs. Ph.D. thesis, Technische Universität Dortmund (2010)
Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_2
Gutwenger, C., Mutzel, P.: Graph embedding with minimum depth and maximum external face. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 259–272. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_24
Harel, D., Meir, S.: An algorithm for straight-line drawing of planar graphs. Algorithmica 20, 119–135 (2000)
Haslinger, C., Stadler, P.F.: RNA structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties. Bull. Math. Biol. 61, 437–467 (1999)
Kaufmann, M., Bekos, M., Klute, F., Pupyrev, S., Raftopoulou, C., Ueckerdt, T.: Four pages are indeed necessary for planar graphs. J. Comput. Geom. 11, 332–353 (2020)
Kerpedjiev, P., Hammer, S., Hofacker, I.L.: FoRNA (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31, 3377–3379 (2015)
Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)
Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_77
Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000)
Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theoret. Comput. Sci. 632, 43–73 (2016)
Pizzonia, M., Tamassia, R.: Minimum depth graph embedding. In: Paterson, M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 356–367. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45253-2_33
Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)
Shabash, B., Wiese, K.C.: jViz.RNA 4.0 - visualizing pseudoknots and RNA editing employing compressed tree graphs. PLoS ONE 14(5), e0210281 (2019)
Shapiro, B.A., Maizel, J., Lipkin, L.E., Currey, K., Whitney, C.: Generating non-overlapping displays of nucleic acid secondary structure. Nucleic Acids Res. 12, 75–88 (1984)
Stein, S.K.: Convex maps. Proc. Am. Math. Soc. 2, 464–466 (1951)
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)
Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and read- ability of diagrams. IEEE Trans. Syst. Man Cybern. 18, 61–79 (1988)
Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math.-Verein. 46, 26–32 (1936)
Wiese, K.C., Glen, E., Vasudevan, A.: jViz.Rna - a Java tool for RNA secondary structure visualization. IEEE Trans. NanoBiosci. 4, 212–218 (2005)
Wigderson, A.: The complexity of the Hamiltonian circuit problem for planar graphs. Technical report 298, Princeton University (1982)
Yannakakis, M.: Planar graphs that need four pages. J. Combin. Theory Ser. B 145, 241–263 (2020)
Zadeh, J., Steenberg, C., Bois, J., Wolfe, B., Pierce, M., Khan, A., Dirks, R., Pierce, N.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–3 (2011)
Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nowicka, M., Gautam, V.K., Orponen, P. (2024). Automated Rendering of Multi-stranded DNA Complexes with Pseudoknots. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-63742-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63741-4
Online ISBN: 978-3-031-63742-1
eBook Packages: Computer ScienceComputer Science (R0)