Skip to main content

Automated Rendering of Multi-stranded DNA Complexes with Pseudoknots

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Abstract

We present a general method for rendering representations of multi-stranded DNA complexes from textual descriptions into 2D diagrams. The complexes can be arbitrarily pseudoknotted, and if a planar rendering is possible, the method will determine one in time which is essentially linear in the size of the textual description. (That is, except for a final stochastic fine-tuning step.) If a planar rendering is not possible, the method will compute a visually pleasing approximate rendering in quadratic time. Examples of diagrams produced by the method are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104, 45–62 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27, 320–331 (1979)

    Article  MathSciNet  Google Scholar 

  3. Bertault, F.: A force-directed algorithm that preserves edge-crossing properties. Inf. Process. Lett. 74, 7–13 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8, 10–15 (1993)

    Article  Google Scholar 

  5. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by edge addition. J. Graph Algorithms App. 8, 241–273 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bruccoleri, R.E., Heinrich, G.: An improved algorithm for nucleic acid secondary structure display. Comput. Appl. Biosci. 4, 167–173 (1988)

    Google Scholar 

  7. Byun, Y., Han, K.: PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25, 1435–1437 (2009)

    Article  Google Scholar 

  8. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The Open Graph Drawing Framework (OGDF). In: Handbook of Graph Drawing and Visualization, chap. 17. CRC Press (2014)

    Google Scholar 

  9. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. App. 7, 211–223 (1997)

    Article  MathSciNet  Google Scholar 

  10. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a graph layout problem with applications to VLSI design. SIAM J. Algebr. Discr. Methods 8, 33–58 (1986)

    Article  MathSciNet  Google Scholar 

  11. Di Battista, G., Eades, P., Tammasia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  12. Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. 11, 229–233 (1948)

    MathSciNet  Google Scholar 

  13. Gao, S., Ding, K.: A graphical criterion of planarity for RNA secondary structures with pseudoknots in Rivas-Eddy class. Theoret. Comput. Sci. 395, 47–56 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gautam, V.K., Long, S., Nowicka, M., Orponen, P.: XDSD: A Tool Bridging DSD System Design to Rule-Based Modelling and Simulation. Web server: https://xdsd-web.org

  15. Gautam, V.K., Long, S., Orponen, P.: RuleDSD: a rule-based modelling and simulation tool for DNA strand displacement systems. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 158–167 (2020)

    Google Scholar 

  16. Grun, C., Werfel, J., Zhang, D.Y., Yin, P.: DyNAMiC workbench: an integrated development environment for dynamic DNA nanotechnology. J. R. Soc. Interface 12(111), 20150580 (2015)

    Article  Google Scholar 

  17. Gutwenger, C.: Application of SPQR-trees in the planarization approach for drawing graphs. Ph.D. thesis, Technische Universität Dortmund (2010)

    Google Scholar 

  18. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_2

    Chapter  Google Scholar 

  19. Gutwenger, C., Mutzel, P.: Graph embedding with minimum depth and maximum external face. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 259–272. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_24

    Chapter  Google Scholar 

  20. Harel, D., Meir, S.: An algorithm for straight-line drawing of planar graphs. Algorithmica 20, 119–135 (2000)

    Article  MathSciNet  Google Scholar 

  21. Haslinger, C., Stadler, P.F.: RNA structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties. Bull. Math. Biol. 61, 437–467 (1999)

    Article  Google Scholar 

  22. Kaufmann, M., Bekos, M., Klute, F., Pupyrev, S., Raftopoulou, C., Ueckerdt, T.: Four pages are indeed necessary for planar graphs. J. Comput. Geom. 11, 332–353 (2020)

    MathSciNet  Google Scholar 

  23. Kerpedjiev, P., Hammer, S., Hofacker, I.L.: FoRNA (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31, 3377–3379 (2015)

    Article  Google Scholar 

  24. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

  25. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_77

    Chapter  Google Scholar 

  26. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000)

    Article  Google Scholar 

  27. Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theoret. Comput. Sci. 632, 43–73 (2016)

    Article  MathSciNet  Google Scholar 

  28. Pizzonia, M., Tamassia, R.: Minimum depth graph embedding. In: Paterson, M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 356–367. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45253-2_33

    Chapter  Google Scholar 

  29. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)

    Article  Google Scholar 

  30. Shabash, B., Wiese, K.C.: jViz.RNA 4.0 - visualizing pseudoknots and RNA editing employing compressed tree graphs. PLoS ONE 14(5), e0210281 (2019)

    Google Scholar 

  31. Shapiro, B.A., Maizel, J., Lipkin, L.E., Currey, K., Whitney, C.: Generating non-overlapping displays of nucleic acid secondary structure. Nucleic Acids Res. 12, 75–88 (1984)

    Article  Google Scholar 

  32. Stein, S.K.: Convex maps. Proc. Am. Math. Soc. 2, 464–466 (1951)

    Article  MathSciNet  Google Scholar 

  33. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)

    Article  MathSciNet  Google Scholar 

  34. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and read- ability of diagrams. IEEE Trans. Syst. Man Cybern. 18, 61–79 (1988)

    Article  Google Scholar 

  35. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math.-Verein. 46, 26–32 (1936)

    Google Scholar 

  36. Wiese, K.C., Glen, E., Vasudevan, A.: jViz.Rna - a Java tool for RNA secondary structure visualization. IEEE Trans. NanoBiosci. 4, 212–218 (2005)

    Google Scholar 

  37. Wigderson, A.: The complexity of the Hamiltonian circuit problem for planar graphs. Technical report 298, Princeton University (1982)

    Google Scholar 

  38. Yannakakis, M.: Planar graphs that need four pages. J. Combin. Theory Ser. B 145, 241–263 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zadeh, J., Steenberg, C., Bois, J., Wolfe, B., Pierce, M., Khan, A., Dirks, R., Pierce, N.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–3 (2011)

    Article  Google Scholar 

  40. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Orponen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nowicka, M., Gautam, V.K., Orponen, P. (2024). Automated Rendering of Multi-stranded DNA Complexes with Pseudoknots. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics